Преимущества гибридных операций в сосудистой хирургии с использованием эластичных стентов из никелида титана ТН-10

Франц В.В., Ивченко О.А., Ивченко А.О.

Advantages of hybrid surgery using elastic stents of nikelid-titanium TH-10 in vascular surger

Frants O.A., Ivchenko O.A., Ivchenko A.O.

Сибирский государственный медицинский университет, г. Томск

© Франц В.В., Ивченко О.А., Ивченко А.О.

Исследовано клиническое применение стента из плоского сверхэластичного элемента с эффектом памяти формы — никелида титана марки ТН-10 при окклюзионных заболеваниях магистральных артерий. Применена гибридная методика — бедренно-подколенное шунтирование со стентированием глубокой артерии бедра конструкцией из никелида титана ТН-10. До вмешательства и в послеоперационном периоде исследовали лодыжечно-плечевой индекс, перемежающуюся хромоту, качество жизни больных. Примененная методика улучшает кровоснабжение конечности на 31% по клиническим показателям по сравнению с контрольной группой. В раннем и отдаленном послеоперационном периодах осложнений не отмечалось.

Ключевые слова: атеросклероз, артерия, стеноз, стент, дилатация, неоинтима.

Study objective is clinical use of a stent of flat over-elastic element with the effect of elastic recovery — nikelid-titanium of TH-10 make in case of occlusive diseases of main arteries. Hybrid approach has been used, that is femoropopliteal shunting with stenting of deep artery of thigh with the construction of nikelid-titanium TH-10. In pre-surgical and post-surgical periods malleolar-brachial index Charcot's syndrome, life quality of the sick Charcot's were studied. The used methods improves blood supply of a limb by 31 percent according to the clinical parameters, in comparison with the control set. In recent and distant post-surgical periods there was no complications found.

 $\textbf{Key words:} \ a the rosclerosis, artery, stenosis, stent, dilatation, neointima.$

УДК 616.1-089.843:615.465:669.295'24.018

Введение

Облитерирующие заболевания артериальной системы занимают первое место в структуре заболеваемости, стойкой нетрудоспособности, летальности во всех странах мира [2, 5, 6]. Особую проблему представляет облитерирующий атеросклероз, составляющий 80% от числа всех случаев хронических облитерирующих заболеваний артерий нижних конечностей [4—6]. По данным литературы, после появления первых симптомов, характерных для артериальной недостаточности нижних конечностей, у 10—40% больных в течение 3—5 лет прогрессирование патологии приводит к гангрене и ампутации конечности [5—7]. При развитии критической ишемии даже при лечении в условиях специализированного стационара 25% больных умирают в течение года, а еще 25% нуждаются в

высоких ампутациях [2, 7, 8]. Ежегодно критическая ишемия нижних конечностей развивается примерно у 500—1 000 человек на 1 млн больных, при этом выполняется около 150 тыс. ампутаций [2]. Наибольшую тяжесть в лечении пациентов представляют так называемые многоэтажные, или сегментарные, стенозы, которые, по данным разных авторов, встречаются в 20-60% случаев [2, 6]. В настоящее время увеличивается количество гибридных операций [2, 5, 6], тем не менее проблема одномоментной реваскуляризации артерий нижних конечностей остается актуальной для российской клинической практики. Известные на сегодняшний день стенты не лишены недостатков, связянных с нередкими осложнениями: рестенозом, реокклюзией, гиперпролиферативной реакцией неоинтимы на имплантированный стент [1, 4, 9, 11]. Случаи рестеноза после стентирования составляют от 20 до

65% в зависимости от локализации поражения и вида стента [10].

В связи с вышеизложенным становится очевидна актуальность разработки и внедрения в клиническую практику реконструктивной хирургии сосудов нового класса материалов — эластичных стентов из никелида титана с памятью формы марки ТН-10, близких по поведению к тканям организма.

Целью исследования было клиническое применение стента-дилататора из никелида титана ТН-10 в реконструктивной хирургии магистральных артерий нижних конечностей и определение преимущества гибридной операции.

Материал и методы

Стент изготовлен из единого плоского сверхэластичного элемента из сплава на основе никелида титана марки ТН-10, приготовленного методом индукционной плавки, и характеризуется рабочим интервалом формоизменения 10–45° (рис. 1).

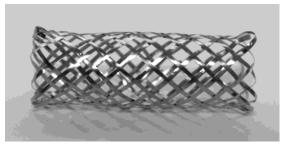


Рис. 1. Эластичный стент из никелида титана ТН-10

Стент имеет форму цилиндрической трубки с воронкообразными расширениями на концах, наличие которых исключает возможность миграции конструкции с места первоначальной имплантации. Эффект эластичности и памяти формы основан на изменении внутреннего строения сплава вследствие перестройки кристаллической решетки материала в условиях свободного охлаждения [3]. Нить, из которой изготовлен стент, переплетена таким образом, что ее пересечение происходит под углом, близким к прямому. В конструкции отсутствуют выступающие углы, а также участки пайки, способные повредить стенку сосуда. При охлаждении конструкция способна легко изменять диаметр до малой величины с одновременным незначительным увеличением длины, что обеспечивает удобство ее имплантации в любой отдел артериальной системы, соответствующий его первоначальному диаметру.

Главной особенностью отечественного стента из никелида титана ТН-10 выступает сверхэластичная эндоваскулярная дилатация, обусловленная конструкцией изделия, материалом и оптимальным давлением на стенку артерии. Радиальное давление составляет 0,002 Н/мм², что является приемлемым. В экспериментальных исследованиях, проведенных на 22 собаках, грубых морфофункциональных изменений стенки аорты не обнаружено. Имплантация стента в просвет артерии по данным макро- и микроскопии не приводила к тромбозу, рубцовой деформации сосуда.

В исследование включены 19 пациентов с атеросклеротическим поражением артерий нижних конечностей (окклюзией поверхностной бедренной артерии со стенозом устья глубокой артерии бедра более 60%) и ишемией ІІБ стадии (по классификации А.В. Покровского — Р. Фонтейна). Все больные мужского пола, средний возраст (62,0 ± 5,3) года. Пациенты были разделены на две группы. Больным основной группы, состоящей из 9 человек, выполнялась гибридная операция — бедренно-подколенное шунтирование (синтетическим протезом — 4, аутовеной — 5) с дилатацией устья глубокой артерии бедра эластическим стентом из никелида титана ТН-10. В контрольную группу были включены 10 пациентов, которым выполнялось только бедренно-подколенное шунтирование (синтетическим протезом — 4, аутовеной — 6).

Сравнительная оценка течения послеоперационного периода у больных основной группы производилась с оценкой данных контрольной группы. У всех пациентов в качестве критерия эффективности отдаленных результатов было исследовано качество жизни (КЖ) с использованием опросника здоровья MOS SF-36, разработанного в США и адаптированного к условиям Российской Федерации. Анкетирование пациентов проводилось до оперативного лечения и через 6 мес после операции.

Всем больным перед вмешательством выполнялась ангиография, по результатом которой выявлялась окклюзия поверхностной бедренной артерии (ПБА) и гемодинамически значимый стеноз устья глубокой артерии бедра (ГБА) более 60%, что в среднем составило (65 \pm 3)%, протяженностью менее 3 см, в среднем (2,5 \pm 0,2) см.

Перед операцией перемежающаяся хромота (ПХ) в основной группе составляла (105 ± 25) м, лодыжечноплечевой индекс (ЛПИ) (0.60 ± 0.07). У больных в контрольной группе ПХ составляла (110 ± 30) м, ЛПИ —

 $(0,60\pm0,06)$. До операции статистически достоверных различий между группами пациентов не отмечалось, p>0,05 (табл. 1). Достоверность различий оценивалась с помощью парного критерия Стьюдента внутри группы и критерия Стьюдента между двумя группами до и после хирургического лечения. При этом значения t>2 и p<0,05 признавались статистически достоверными.

Операции в обеих группах проводились под спинномозговой анестезией. Первым этапом выполнялось выделение общей бедренной артерии с бифуркацией. Глубокая артерия бедра выделялась на протяжении 5 см для удобства наложения зажима. После внутривенного введения 5 тыс. ЕД гепарина общая бедренная артерия и глубокая артерия бедра пережимались сосудистыми зажимами. По передней стенке общей бедренной артерии выполнялась артериотомия протяженностью 12 мм. В сформированное артериальное окно в область стеноза устья глубокой артерии бедра после охлаждения в хлорэтиле вводился стент диаметром

6 мм, длиной 30 мм. Под действием температуры тела стент расправлялся, дилатируя стеноз с полным раскрытием. Стент имплантировался без технических трудностей. В артериотомическую рану общей бедренной артерии вшивался проксимальный конец бедренно-подколенного шунта. После шунтирования зажимы удалялись, пульс дистальнее стента был отчетливый. Проводился тщательный гемостаз, раны ушивались послойно без дренажей.

Ведение пациентов с имплантированным стентом в послеоперационном периоде не требовало дополнительной терапии, лечение проводилось согласно стандартным схемам, используемым после реконструктивных операций на сосудах. В послеоперационном периоде осложнения связанные с использованием стента из никелида титана, отсутствовали. В анализах крови статистически достоверные изменения (p < 0.05) определялись только в таких показателях, как общий белок, общий билирубин, протромбиновый индекс (ПТИ), тромбоциты (табл. 2).

Таблица 1

Сравнение клинических результатов больных обеих групп до и после операции

Показатель	До операции		п	После операции		
	Основная группа	Контрольная группа	Достоверность	Основная группа	Контрольная группа	Достоверность
ЛПИ	0.6 ± 0.07	0.6 ± 0.06	t = 0.6	0.9 ± 0.07	0.8 ± 0.05	t = 3,7
			p = 0.5			p = 0.002
ПХ	105 ± 25	107 ± 30	t = 0,1	1400 ± 180	955 ± 116	t = 6,4
			p = 0.8			p = 0.0001

Таблица 2 Основные показатели анализов крови в раннем послеоперационном периоде

		, ,	
Показатель крови	Группа	$M \pm m$	p
Общий белок, г/л	Основная	$65,8 \pm 2,7$	0,005
	Контрольная	$62,0\pm2,4$	
Билирубин общий, мкмоль/л	Основная	$15,8 \pm 1,2$	0,03
	Контрольная	$17,3\pm1,5$	
Сахар, ммоль/л	Основная	$5,5 \pm 0,5$	0,6
	Контрольная	$5,4 \pm 0,8$	
ПТИ, %	Основная	$74,3 \pm 13,3$	0,003
	Контрольная	$96,2 \pm 14,0$	
Лейкоциты, 10 ⁹ /л	Основная	$8,1 \pm 1,3$	0,3
	Контрольная	$8,7 \pm 1,3$	
Эритроциты, 10 ¹² /л	Основная	$4,1 \pm 0,2$	0,5
	Контрольная	$4,2 \pm 0,3$	
СОЭ, мм/ч	Основная	$15,4 \pm 2,5$	0,2
	Контрольная	$17,2 \pm 4,0$	
Тромбоциты, 10 ⁹ /л	Основная	$253,0 \pm 59,0$	0,04
	Контрольная	$297,5 \pm 24,0$	

В послеоперационном периоде отмечалось увеличение дистанции безболевой ходьбы в обеих группах. Однако в основной группе при среднем темпе ходьбы ПХ определялась через $(1\ 400\pm180)\ \mathrm{M}$, а в контрольной группе через $(955\pm116)\ \mathrm{M}$. Лодыжечно-плечевой индекс в основной группе составлял (0.90 ± 0.07) , в контрольной группе (0.80 ± 0.05) . У пациентов, которым была проведена гибридная операция — бедренноподколенное шунтирование и стентирование устья глубокой артерии бедра, отмечалось статистически достоверное улучшение клинических показателей по отношению к пациентам, которым коррекция стеноза глубокой артерии бедра не выполнялась, p<0.05; t>2 (табл. 1).

Через 7 сут после операции проводилась контрольная ангиография (рис. 2). Миграции стентов, тромбоза глубокой артерии бедра не отмечено, устья полностью проходимы. Больные выписывались на

9-е сут после операции с рекомендациями приема аспирина 100 мг/сут (постоянно), плавикса (зилта) 75 мг/сут (12 мес).

Рис. 2. Ангиограмма через 7 сут после операции. Определяется стояние стента в просвете глубокой артерии бедра. Рестеноз, тромбоз, дислокация стента отсутствуют, устье ГБА проходимо

Отдаленные результаты прослежены у пациентов в срок до 6 мес. Проводилось клиническое обследова-

ние с ангиографией стентированных участков. В основной группе больных ЛПИ составляло (0.90 ± 0.08) , в контрольной (0.80 ± 0.08) . Безболевая ходьба в обеих группах существенно не изменилась с данными раннего послеоперационного периода, в основной группе — $(1\,380\pm$

 \pm 111) м, в контрольной группе (945 \pm 134) м (табл. 3).

Исходя из полученных результатов, представленных в табл. 3, одномоментная реконструкция обеих магистральных артерий (ПБА и ГБА) имеет статистически достоверные преимущества. Через 6 мес ЛПИ и ПХ в основной группе по сравнению с контрольной были выше на 11 и 31% соответственно.

У всех больных до операции и через 6 мес после операции изучалось КЖ при помощи опросника MOS SF-36 (табл. 4).

Наилучшие показатели КЖ зафиксированы в физическом функционировании ($\Phi\Phi$) и болевом факторе ($\Phi\Phi$) по сравнению с результатами до операции (p<0,05). Отмечено увеличение $\Phi\Phi$ в основной группе на 29,7%, в контрольной — на 26,4%. В основной группе физическое функционирование на 3,3 балла выше, чем в контрольной группе. Баллы по $\Phi\Phi$ в основной группе увеличились на 27,6%, а в контрольной группе — на 23,4%. В основной группе по $\Phi\Phi$ на 1,9 балла больше, чем в контрольной группе.

Отдаленные клинические результаты больных обеих групп

Таблица 3

	Основная группа			Контрольная группа		
Показатель	До операции	Через 6 мес после операции	Достоверность	До операции	Через 6 мес после операции	Достоверность
ЛПИ	0.6 ± 0.07	$0,90 \pm 0,08$	t = 7,6	$0,60 \pm 0,06$	$0,80 \pm 0,08$	t = 6,6
			p = 0.0001			p = 0.0001
ПХ, м	105 ± 25	1380 ± 111	t = 34,7	107 ± 30	945 ± 134	t = 21,6
			p = 0.0001			p = 0.0001

Таблица 4

Показатели качества жизни больных до и после операции, балл

П	Дос	операции	После операции		
Показатель	Основная группа	Контрольная группа	Основная группа	Контрольная группа	
Физическое функционирование	$42,1 \pm 17,4$	$42,6 \pm 12,8$	59,9 ± 5,4*	57,9 ± 7,9*	
Ролевое физическое функционирование	$47,2 \pm 22,1$	47.8 ± 12.8	$47,6 \pm 36,2$	$47,3 \pm 7,9$	
Социальное функционирование	$64,7 \pm 8,2$	$65,1 \pm 8,7$	$69,6 \pm 8,2$	$69,2 \pm 5,4$	
Болевой фактор	$42,4 \pm 6,7$	$43,4 \pm 5,2$	$58,6 \pm 2,4*$	$56,7 \pm 2,5*$	
Психологическое здоровье	$60,2 \pm 3,1$	$60,4 \pm 2,7$	$62,9 \pm 2,4$	$62,2 \pm 3,1$	
Ролевое эмоциональное функционирование	$61,2 \pm 2,1$	$62,4 \pm 3,6$	$64,3 \pm 5,2$	$64,4 \pm 4,2$	
Жизнеспособность	$59,2 \pm 2,3$	$60,4 \pm 2,8$	$62,6 \pm 4,1$	$62,2 \pm 5,4$	

 51.5 ± 11.7

* p < 0.05, по сравнению с фоном до лечения.

Результаты и обсуждение

Во время операции стент из никелида титана ТН-10 ни в одном случае не привел к осложнениям. Полученные результаты раннего послеоперационного периода свидетельствовали об отсутствии миграции и тромбоза стента. Лабораторные данные не выявили каких-либо отклонений в общих, биохимических анализах и анализах свертывающей системы крови в послеоперационном периоде. Не удлинялись сроки госпитализации в группе с применением стента. В отдаленном периоде стент проходим, рестеноза, тромбоза не отмечено. Исходя из полученных результатов, гибридная одномоментная реконструкция обеих магистральных артерий (ПБА и ГБА) имеет статистически достоверные преимущества. Через 6 мес ЛПИ в основной группе, где выполнялась дилатация стеноза глубокой артерии бедра, на 11%, а безболевая ходьба — на 31% выше, чем в контрольной группе, за счет улучшения кровотока по глубокой артерии бедра.

Анализ послеоперационных результатов показал высокую эффективность гибридной методики (бедренно-подколенное шунтирование со стентированием устья глубокой артерии бедра) по сравнению с изолированным бедренно-подколенным шунтированием. Как следствие, клиническая послеоперационная реабилитация больных в основной группе по результатам ПХ, ЛПИ и КЖ была выше, чем в контрольной. Таким образом, на основании материалов клинического применения конструкции можно сделать вывод, что используемый стент из никелида титана марки ТН-10 обладает свойствами интравазального дилататора, позволяющими эффективно применять его при стенозах магистральных артерий.

 52.6 ± 12.2

 58.9 ± 9.5

 5.4 ± 8.5

Выводы

- 1. Имплантированный эластичный стент является опорным каркасом, дилатирующим стеноз сосуда без развития рестеноза и тромбоза в отдаленном периоде.
- 2. Во всех случаях дилатации достигнут оптимальный ангиографический и клинический результат.
- 3. При гибридной методике отмечаются статистически достоверные преимущества клинических показателей в ближайшем и отдаленном послеоперационном периодах и улучшение качества жизни больных.

Литература

- 1. *Араблинский А.В.* Рестеноз внутри стента // Клинич. медицина. 2004. Т. 82, № 9. С. 10—13.
- 2. *Бокерия Л.А., Алекян Б.Г.* Руководство по рентгенэндоваскулярной хирургии сердца и сосудов. М.: НЦССХ им. А.Н. Бакулева РАМН, 2008. Т. І, ІІ, ІІІ.
- 3. Гюнтер В.Э., Ходоренко В.Н., Ясенчук Ю.Ф. Никелид титана. Медицинский материал нового поколения. Томск: Изд-во МИЦ, 2006.
- 4. Коков Л.С., Капранов С.А., Долгушин Б.И. и др. Сосудистое и внутриорганное стентирование. М.: Изд. дом «Грааль», 2003. 384 с.
- 5. *Кротовский Г.С., Зудин А.М.* Тактика лечения пациентов с критической ишемией нижних конечностей. М.: Медицина, 2005.
- 6. Покровский А.В. Клиническая ангиология. М.: Медицина, 2004. Т. I, II.
- 7. Савельев В.С., Кириенко А.И. Клиническая хирургия: национальное руководство. М.: ГЭОТАР-Медиа, 2008. Т. III.
- 8. Fisher R.K., Harris P.L. Epidemiological and economic considerations in the critically ischemic libt // Critical Libt Ischemia. Futura Publisching Compani / Eds A. Branchereau, B. Jacobs. N. Y.: Armonk, 1999. P. 19—25.
- Dormandy J.A., Rutherford B. Management of peripheral arterial disease // J. Vasc. Surg. 2000. V. 31. S1—S296.
- Duda S.H., Poerner T.C., Wiesinger B. et al. Drug-eluting stens: potential applications for peripheral arterial occlusive disease // J. Vasc. Inter. Radiol. 2003. V. 14. P. 291—301.
- Schillinger M., Sabeti S., Loewe C. Balloon Angioplasty versus Implantation of Nitinol Stents in the Superficial Femoral Artery // N. Engl. J. Med. 2006. V. 354. P. 1879—1888.

Поступила в редакцию 15.12.2010 г. Утверждена к печати 22.12.2010 г.

Сведения об авторах

В.В. Франц — заочный аспирант кафедры факультетской хирургии СибГМУ (г. Томск).

О.А. Ивченко — д-р мед. наук, профессор, зав. кафедрой факультетской хирургии СибГМУ (г. Томск).

А.О. Ивченко — д-р мед. наук, профессор кафедры факультетской хирургии СибГМУ (г. Томск).

Для корреспонденции

Франц Вадим Владимирович, тел. 8-909-548-2866, 8-912-513-5257; e-mail: fvv-1981@mail.ru