Субпопуляционный состав регуляторных Т-клеток крови у больных туберкулезом легких с множественной лекарственной устойчивостью

Чурина Е.Г., Новицкий В.В., Уразова О.И., Воронкова О.В., Колобовникова Ю.В.

Subpopulation structure of regulatory T-cells of blood in patients with multiple drugresistant pulmonary tuberculosis

Churina Ye.G., Novitsky V.V., Urazova O.I., Voronkova O.V., Kolobovnikova Yu.V.

Сибирский государственный медицинский университет, г. Томск

© Чурина Е.Г., Новицкий В.В., Уразова О.И. и др.

Проанализирован субпопуляционный состав Т-регуляторных клеток (T-reg) периферической крови у больных с впервые выявленным туберкулезом легких в зависимости от клинической формы заболевания и чувствительности *Муcobacte- гіит tuberculosis* к противотуберкулезным препаратам. Показано, что ведущую роль в формировании иммуносупрессии при инфильтративном, диссеминированном и фиброзно-кавернозном туберкулезе легких играют Т-reg с иммунофенотипом CD4⁺CD25⁺Foxp3⁺. При этом их количество в крови повышено как при лекарственно-резистентном, так и при лекарственно-чувствительном туберкулезе легких. Продемонстрировано увеличение количества CD4⁺CD25⁻Foxp3⁺-T-reg при лекарственно-резистентных вариантах инфильтративного и фиброзно-кавернозного туберкулеза легких.

Ключевые слова: регуляторные Т-клетки, иммуносупрессия, туберкулез легких, лекарственная устойчивость.

Subpopulation structure of regulatory T-cells of peripheral blood in patients with newly diagnosed pulmonary tuberculosis depending on the clinical form of disease and sensitivity of *Mycobacterium tuberculosis* to anti-tuberculosis drugs have been analyzed in this work. It has been shown that in formation immune suppression at infiltrative, dissemination and fibrosis-cavity pulmonary tuberculosis the leading part play natural regulatory CD4⁺CD25⁺Foxp3⁺-T-lymphocytes. Thus increase of their number in blood at drug-resistance and drug-susceptible patients. It has been demonstrated that in patients with fibro-cavernous and infiltrative form of the disease and drug-resistance pulmonary tuberculosis the number of CD4⁺CD25⁻Foxp3⁺-regulatory T-cells were increasing.

Key words: regulatory T-cells, immune suppression, pulmonary tuberculosis, drug resistance.

УДК 616.24-002.5:615.015.6:577.27

Введение

Несмотря на то что с момента открытия регуляторных Т-клеток (T-reg) в 1995 г. японским иммунологом S. Sakaguchi прошло уже больше 15 лет, они попрежнему находятся под пристальным вниманием исследователей во всех ведущих иммунологических центрах мира. Такой интерес ученых к проблеме регуляторных Т-клеток обусловлен не только важностью их функциональных особенностей, но и широким кругом практически значимых проблем клинической иммунологии, с которыми связаны Т-reg. Роль Т-reg в иммунном ответе переоценить невозможно, но глав-

ные их функции заключаются в способности обеспечивать периферическую иммунологическую толерантность к аутоантигенам и супрессировать пролиферацию различных клонов Т-хелперов (Th), — Th1, Th2, Th17, Tfh [5, 7]. Основными последствиями дефицита регуляторных Т-клеток являются формирование аутоиммунной патологии, развитие аллергических заболеваний, нарушение нормального течения беременности и невынашивание плода. Вместе с тем, избыточная активность Т-гед связана с повышением риска возникновения онкологических заболеваний и ослаблением противоинфекционной защиты организма с формиро-

ванием вторичной иммунологической недостаточности [6, 10].

Цель работы — оценить особенности субпопуляционного состава регуляторных Т-клеток в крови больных с впервые выявленным туберкулезом легких в зависимости от клинической формы заболевания и лекарственной чувствительности возбудителя к основным противотуберкулезным препаратам.

Материал и методы

Проведено обследование 75 пациентов с впервые выявленным туберкулезом легких (53 мужчины и 22 женщины в возрасте от 18 до 55 лет, средний возраст (44 ± 12) лет). Диагноз «туберкулез легких» (ТБ) устанавливали на основании клинической картины заболевания, рентгенологического исследования легких, данных микроскопического и бактериологического исследования мокроты. Все обследованные были разделены на три группы по клинической форме заболевания: группу с инфильтративным туберкулезом легких (ИТБ) составили 46 человек, группу с диссеминированным туберкулезом легких (ДТБ) — 19 пациентов, с фиброзно-кавернозным туберкулезом легких (ФКТБ) — 10 больных. При делении больных ТБ на группы учитывали также лекарственную чувствительность возбудителя к основным противотуберкулезным препаратам (ПТП): группу пациентов, выделяющих микобактерии туберкулеза (МБТ), чувствительные к основным ПТП, составили 46 человек, во вторую группу были включены 29 больных, выделяющих МБТ, устойчивые к ПТП основного ряда. Контрольная группа была сформирована из 18 здоровых доноров с аналогичными характеристиками по полу и возрасту (12 мужчин и 6 женщин в возрасте от 18 до 55 лет, средний возраст (41 ± 7) лет).

Материалом исследования являлась периферическая венозная кровь. Забор крови проводили утром натощак из локтевой вены в количестве 10 мл.

Для определения сочетанной экспрессии поверхностных CD4- и CD25-маркеров на лимфоцитах периферической крови и внутриклеточного маркера Foxp3 применяли метод проточной лазерной трехцветной цитометрии с использованием специфических моноклональных антител (MAT), меченных флуоресцентными метками (FITC, PE и PE-Cy5 Becton Dickinson (BD), США). Анализ образцов клеточных суспензий

проводили на проточном цитометре FACSCalibur (Becton Dickinson, CIIIA) с аргоновым лазером на основе определения пяти параметров: малого углового (FSC, характеризующего размер клетки), бокового (SSC, характеризующего цитоплазматические и мембранные особенности клетки) светорассеяния и трех показателей флуоресценции — зеленой (FITC — 530 нм), оранжевой (PE — 585 нм) и малиновой (PE — Cy5 — 610 нм) в гейте мононуклеарных клеток, выявляемых на FL1-, FL2-, FL3-каналах. Использовали автоматическое программное обеспечение, методы сбора и анализа данных с высоким разрешением (1024 канала).

Результаты исследования обрабатывали с использованием стандартного пакета программ SPSS 11.0. Так как распределение выборок отличалось от нормального, рассчитывали медиану Me, первый и третий квартили (Q_1, Q_3) . Для оценки достоверности различий выборочных данных, не подчиняющихся критерию нормального распределения, использовали U-критерий Манна—Уитни для независимых выборок. Критическое значение уровня статистической значимости при проверке нулевых гипотез принималось равным 0,05.

Результаты и обсуждение

На сегодняшний день репертуар идентифицированных Т-гед весьма разнообразен, при этом выделяют, как минимум, две основные разновидности регуляторных Т-клеток: естественные тимические регуляторные Т-клетки (γδT, NKT, T-reg) и индуцированные на периферии (T-reg, Tr1, Th3, CD8⁺CD28⁻) [7, 11]. Предполагается, что естественные Т-гед-клетки имеют фенотип CD4⁺CD25⁺Foxp3⁺, в то время как к индуцированным СD4⁺ регуляторным Т-клеткам относятся лимфоциты с иммунофенотипом CD4⁺CD25⁻Foxp3⁺, а также CD4⁺CD25⁺Foxp3⁻-гетерогенная субпопуляция Т-лимфоцитов, включающая в себя как регуляторные Т-клетки, так и активированные CD4⁺ Т-хелперы. Следует отметить, что субпопуляция Т-reg-клеток, имеющая иммунофенотип CD4⁺CD25⁺Foxp3⁺, отнесена как к естественным, так и к индуцированным Т-reg, поскольку кроме антигеннезависимой дифференцировки в тимусе в процессе нормального развития организма установлена возможность конверсии Т-хелперов в Т-reg на периферии при реализации адаптивного иммунного

[6, 7]. При этом доказано, что супрессорной активно-

стью обладают только Foxp3-экспрессирующие T-regклетки, т.е. CD4⁺CD25⁺Foxp3⁺- и CD4⁺CD25⁻Foxp3⁺-Тлимфоциты, в то время как транскрипционный фактор Foxp3 является самым точным маркером идентификации T-reg [8].

При изучении субпопуляционного состава регуляторных Т-клеток периферической крови у больных ИТБ и ДТБ в острый период заболевания было выявлено достоверное снижение по сравнению с нормой числа CD4⁺CD25⁺Foxp3⁻-клеток вне зависимости от лекарственной чувствительности возбудителя (таблица). Данный факт можно рассматривать как проявление Т-клеточного иммунодефицита, связанного либо с угнетением пролиферации CD4⁺-T лимфоцитов, либо с их быстрой элиминацией из периферической крови посредством индукции апоптоза лимфоцитов антигенами МБТ. Ранее проведенными исследованиями показано, что потеря равновесия между пролиферацией Т-клеток и индуцированным рецепторным апоптозом приводит к массовой гибели антиген-специфических клонов Thлимфоцитов. Это является одним из факторов длительной персистенции инфекции в организме с развитием тяжелых форм вторичного иммунодефицита [3, 4, 9].

Анализ количества CD4⁺CD25⁺Foxp3⁺-T-reg в крови выявил его увеличение у больных ИТБ и ДТБ вне зависимости от лекарственной чувствительности возбудителя, что может способствовать формированию супрессии Th1-ответа с целью предотвращения развития гиперергической иммунной реакции и повреждения ткани легких. Интересно, что при лекарственноустойчивом (ЛУ) ФКТБ данный параметр был статистически выше не только в сравнении с контрольными значениями, но и относительно группы больных с лекарственно-чувствительным (ЛЧ) ТБ этой клинической формы (таблица). Столь значительное увеличение количества T-reg при резистентном к лечению ФКТБ позволяет предполагать глубокое угнетение иммунного ответа с формированием функциональной несостоятельности всех клеток, участвующих в нем. Следует отметить, что штаммы микобактерий, устойчивые к стандартной химиотерапии, обладают определенными свойствами в отношении реализации механизмов иммуносупрессии, возможно, посредством активации образования на периферии анергичных Тклеток с супрессорной активностью [1, 2]. Интересно, что достоверное увеличение количества регуляторных Т-лимфоцитов с иммунофенотипом CD4⁺CD25⁻Foxp3⁺

было обнаружено только в группах пациентов, страдающих ЛУТБ, а именно у больных с ИТБ и ФКТБ. При этом у больных с фиброзно-кавернозным ЛУТБ данный параметр был более чем в 3 раза выше, чем при лекарственно-чувствительной форме заболевания (таблица).

Вполне вероятно, что при лекарственно-резистентном ТБ, с одной стороны, происходит активная пролиферация и увеличение общего пула регуляторных Тклеток как за счет естественных, так и за счет индуцированных T-reg, с другой стороны, как указывалось выше, лекарственно-устойчивые штаммы МБТ могут способствовать угнетению иммунного ответа посредством индукции Т-гед-клеток [2]. В свете показанных изменений с учетом данных литературы можно предположить, что поддержание эффективного иммунного ответа в такой ситуации становится невозможным. Очевидно, что в дальнейшем T-reg-опосредованная иммуносупрессия неизбежно приведет к утяжелению течения патологического процесса у больных ТБ в случае как изначально диагностированной лекарственной устойчивости (первичной), так и вторично сформировавшейся на фоне проведения химиотерапии.

Содержание регуляторных Т-лимфоцитов в крови больных туберкулезом легких в зависимости от чувствительности возбудителя к основным противотуберкулезным препаратам $(Me\ (Q_1 — Q_3))$

Группа обследованных лиц		CD4 ⁺ CD25 ⁺ FoxP3 ⁻ , %	CD4 ⁺ CD25 ⁺ FoxP3 ⁺ , %	CD4 ⁺ CD25 ⁻ FoxP3 ⁺ , %
·				l
Здоровые доноры		25,45	2,63	5,00
		(22,30-27,60)	(2,00-3,29)	(4,76-10,00)
Больные с лекарственно- чувствительным туберкулезом легких	Инфильтра-	10,00	4,00	6,00
	тивный ТЛ	(7,00—22,00)	(4,00-8,00)	(4,10-10,00)
		$p_1 = 0.002$	$p_1 = 0.006$	
	Диссеминиро-	13,50	5,21	5,50
	ванный ТЛ	(10,00—	(2,75-9,50)	(4,00-9,00)
		17,00)	$p_1 = 0.017$	
		$p_1 = 0.006$		
	Фиброзно-	19,50	2,80	3,00
	кавернозный	(11,00—	(2,10-3,70)	(2,00-6,00)
	ТЛ	32,50)	$p_3 = 0.010$	$p_2 = 0.011$
		$p_3 = 0.013$		
Больные с лекарственно- устойчивым туберкулезом легких	Инфильтра-	16,00	5,00	9,00
	тивный ТЛ	(9,00-27,00)	(2,00-8,00)	(5,00—13,00)
		$p_1 = 0.043$	$p_1 = 0.042$	$p_1 = 0.005$
		$p_4 = 0.014$		$p_4 = 0.043$
	Диссеминиро-	15,00	4,00	7,00
	ванный ТЛ	(7,00-19,00)	(3,00-7,00)	(5,00-8,00)
		$p_1 = 0.0063$	$p_1 = 0.031$	
	Фиброзно-	18,00	7,00	11,00
	кавернозный	(12,00—	(2,00—10,00)	(8,00—12,50)
	ТЛ	25,00)	$p_1 = 0.002$	$p_1 = 0.012$

Чурина Е.Г., Новицкий В.В., Уразова О.И. и др.

П р и м е ч а н и е. p_1 — уровень статистической значимости различий по сравнению с параметрами у здоровых доноров; p_2 — по сравнению с параметрами у больных ИТБ; p_3 — по сравнению с параметрами у больных ДТБ; p_4 — по сравнению с параметрами при ЛЧТБ.

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках Федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технического комплекса России на 2007—2013 гг.» (ГК № 16.512.11.2046 от 14 февраля 2011 г.).

Литература

- 1. *Воронкова О.В., Уразова О.И., Новицкий В.В., Стрепис А.К.* Иммунопатология туберкулеза легких. Томск: Изд-во Том. ун-та, 2007. 194 с.
- 2. Сахно Л.В., Тихонова М.А., Курганова Е.В. и др. Т-клеточная анергия в патогенезе иммунной недостаточности при туберкулезе легких // Проблемы туберкулеза и болезней легких. 2004. № 11. С. 23–28.
- Сахно Л.В., Тихонова М.А., Никонов С.Д и др. Дисфункции макрофагов, генерированных из моноцитов крови больных туберкулезом легких // Бюл. СО РАМН. 2010.

Субпопуляционный состав регуляторных Т-клеток крови...

- T. 30, № 2. C. 101—108.
- 4. *Сахно Л.В., Тихонова М.А., Леплина О.Ю. и др.* Роль PD-1/B7-H1-опосредованного пути в нарушении антигенспецифического ответа у больных туберкулезом легких // Иммунология. 2011. Т. 32, № 2. С. 89—93.
- 5. Симбирцев А.С. Интерлейкин-1. Физиология. Патология. Клиника. СПб.: Изд-во «Фолиант», 2011. 480 с.
- 6. *Хаитов Р.М., Пинегин Б.В., Ярилин А.А.* Руководство по клинической иммунологии. Диагностика заболеваний иммунной системы: руководство для врачей. М.: ГЭОТАР-Медиа, 2009. 352 с.
- 7. *Хаитов Р.М., Ярилин А.А., Пинегин Б.В.* Иммунология: атлас. М.: ГЭОТАР-Медиа, 2011. 624 с.
- 8. *Хайдуков С.В., Зурочка А.В.* Цитометрический анализ субпопуляций Т-хелперов (Th1, Th2, Treg, Th17, Т-хелперы активированные) // Мед. иммунология. 2011. Т. 13, № 1. С. 7—16.
- 9. *Чурина Е.Г., Уразова О.И., Воронкова О.В. и др.* Роль Тлимфоцитов в иммунопатогенезе туберкулезной инфекции // Туберкулез и болезни легких. 2011. № 3. С. 3—7.
- 10. Lee D.C., Harker J.A., Tregoning J.S. et al. CD25+ natural regulatory T cells are critical in limiting innate and adaptive immunity and resolving disease following respiratory syncytial virus infection // J. Virol. 2010. V. 84, № 17. P. 8790-8798.
- 11. Liston A., Lu L.-F., O'Carroll D. et al. Dicer-dependent microRNA pathway safeguards regulatory T cell function // J. Exp. Med. 2009. V. 205, № 9. P. 1993—2004.

Поступила в редакцию 10.06.2011 г. Утверждена к печати 11.07.2011 г.

Сведения об авторах

- **Е.Г. Чурина** канд. мед. наук, докторант кафедры патофизиологии СибГМУ (г. Томск).
- **В.В. Новицкий** заслуженный деятель науки РФ, д-р мед. наук, профессор, академик РАМН, зав. кафедрой патофизиологии СибГМУ (г. Томск).
- **О.И. Уразова** д-р мед. наук, профессор кафедры патофизиологии СибГМУ (г. Томск).
- **О.В. Воронкова** д-р мед. наук, профессор кафедры патофизиологии СибГМУ (г. Томск).
- *Ю.В. Колобовникова* канд. мед. наук, докторант кафедры патофизиологии СибГМУ (г. Томск).

Для корреспонденции

Чурина Елена Георгиевна, тел.: 8 (382-2) 52-63-25; 8-913-806-0700; e-mail: lena1236@yandex.ru