Состояние обмена норадреналина у детей с тикозными гиперкинезами

Федосеева И.Ф.¹, Попонникова Т.В.¹, Веремеев А.В.² Noradrenaline state in children with a tic disorders Fedoseyeva I.F., Poponnikova T.V., Veremeyev A.V.

- Ч Кемеровская государственная медицинская академия, г. Кемерово
- НППЛ реконструктивной хирургии сердца и сосудов с клиникой СО РАМН, г. Кемерово

© Федосеева И.Ф., Попонникова Т.В., Веремеев А.В.

Изучен уровень содержания норадреналина в сыворотке крови иммуноферментным методом у 28 детей с тикозными гиперкинезами в возрасте 6-16 лет. Выявлено достоверное снижение уровня норадреналина в сыворотке крови больных в сравнении с группой здоровых лиц, что свидетельствует об участии обмена норадреналина в формировании тикозных гиперкинезов, эмоционально-волевых и поведенческих нарушений.

Ключевые слова: норадреналин, тикозные гиперкинезы, дети, поведение.

The content of noradrenaline in blood serum in 28 children 6-16 years of age with tic disorder was analyzed. It was detected reliable descent the content of noradrenaline in blood serum of the children with a tic disorders compared the group of healthy children. Authors suppose that metabolism of noradrenaline takes part in pathogenesis of tic disorder, emotional and behavioral disorders.

Key words: noradrenaline, tic disorder, children, behavior.

УДК 616.8-009.12-009.29:577.175.523

Введение

В настоящее время неврозоподобные тикозные гиперкинезы являются одной из наиболее распространенных нозологических форм в структуре неврологической патологии детского возраста и составляют от 4,5 до 23,0% всех неврологических заболеваний детского возраста [1, 3]. Общая частота тиков в популяции – 4%, а ее наибольший пик – 10% отмечен у детей 6-7-летнего возраста [12]. У мальчиков тики встречаются чаще, чем у девочек (4-9 : 1) [1, 3].

До настоящего времени нет единого мнения о патогенезе гиперкинезов [5, 8]. Высказываются предположения о разнообразии церебральных механизмов развития заболевания, указывается на недостаточную изученность патогенетического механизма развития заболевания [1, 5, 6, 7, 9, 10]. Исследования выявляют роль различных факторов в генезе тиков. Биохимически тики сопровождаются усилением процессов инактивации дофамина [6]. Определение концентрации катехоламинов в сыворотке крови позволяет

установить уровень метаболизма нейромедиаторов в центральной нервной системе (ЦНС). В основе использования данных катехоламинового обмена в диагностике состояний нейромедиаторных систем лежит так называемая периферическая модель ЦНС, согласно которой биохимические показатели крови и мочи отражают особенности состояния нейрохимических систем мозга [4]. Дофаминергическая система контролирует моторные функции организма, формирование мотиваций и влечений, секрецию пролактина, тиреотропного, адренокортикотропного и соматотропного гормонов и, в свою очередь, находится под контролем серотониновой и норадреналиновой систем. Норадренергическая система обеспечивает процессы внимания на уровне префронтальной коры [11]. Чаще (в больших полушарий) норадреналин выполняет роль тормозного медиатора, реже (в гипоталамусе) действует как возбуждающий медиатор [2]. Состояние обмена норадреналина при патологии нервной системы, сопровождающейся тикозными гиперкинезами, у детей изучено недоФедосеева И.Ф., Попонникова Т.В., Веремеев А.В. Состояние обмена норадреналина у детей с тикозными гиперкинезами

статочно.

Цель исследования – определение уровня содержания норадреналина в сыворотке крови детей с тикозными гиперкинезами.

Материал и методы

В исследование вошли 28 детей, находившихся на обследовании и лечении в клинике неврологии Кемеровской государственной медицинской академии и в психоневрологическом отделении № 2 центральной городской детской клинической больницы г. Кемерово. Исследуемую группу составили 26 детей с тиками (из них 2 – с генерализованным тиком (синдром Туретта)), 1 ребенок с логоневрозом, в 1 случае диагностировано ревматическое поражение нервной системы (малая хорея).

В исследуемую группу входили больные в возрасте от 6 до 16 лет, средний возраст (9,8 \pm 2,1) года, из них 18 (64%) мальчиков и 10 (35,7%) девочек. Длительность заболевания составляла от 1 до 9 лет, в среднем среди девочек (4,0 \pm 3,0) года, среди мальчиков (2,4 \pm 1,7) года. Группа контроля включала 12 человек (7 девочек и 5 мальчиков) в возрасте от 7 до 15 лет, средний возраст (12,3 \pm 2,8) года.

Изучался неврологический статус больных, проводилась офтальмоскопия, биохимическое исследование крови (билирубин, печеночные трансаминазы, медь, мочевая кислота). Для определения биоэлектрической активности головного мозга была проведена электроэнцефалография на компьютерном 24-канальном электроэнцефалографе с использованием программы Neurotravel 24D.

Содержание норадреналина в сыворотке крови определяли методом твердофазного иммуноферментного анализа (Noradrenalin(e) – ELISA, IBL, Гамбург, Германия). Процедуру анализа и расчет результатов осуществляли согласно инструкции производителя. Забор материала проводили в утренние часы (с ов.оо до ор.оо) натощак. Полученную из кубитальной вены кровь больных центрифугировали при з ооо об/мин в течение 10 мин, после чего сыворотку помещали в пластиковые пробирки и заморажива-

ли при температуре -25 °C. Определение концентрации норадреналина проводили одномоментно во всех пробах.

Статистическую обработку полученных в ходе исследования результатов проводили на персональном компьютере с использованием пакета прикладных программ Statistica 6.0. Для проверки гипотезы о равенстве групповых средних значений использовали непараметрический критерий Манна-Уитни. Для каждой вычисляли выборочное среднее М, группы стандартное квадратичное отклонение о и ошибку среднего арифметического т. Связь между показателями определяли с использованием корреляции Спирмена. При наличии корреляционной связи определяли достоверность р и силу связи г. Статистически значимыми **СЧИТАЛИ ОТЛИЧИЯ ПРИ** p < 0.05.

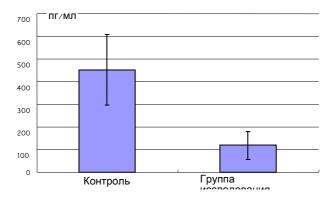
Результаты и обсуждение

У больных, включенных в исследование, преобладали вторичные тики перинатального генеза. Двое детей страдали синдромом Жиль де ла Туретта, у т ребенка был логоневроз, требенок лечился в отделении по поводу ревматизма с поражением нервной системы (малая хорея).

По клиническим проявлениям преобладали локальные (фациальные) и распространенные (фациокраниобрахиальные) тики – у 24 (85,7%) больных, генерализованные тики – у 2 (7,1%) пациентов. По тяжести преобладали единичные тики – у 24 (85,7%) человек, серийные тики наблюдались у 2 (7,1%) больных.

В большинстве случаев – у 19 (67,8%) детей заболевание имело ремиттирующее течение. По длительности заболевания пациенты распределились следующим образом: до 1 года включительно тикозными гиперкинезами страдали 9 (32,1%) больных, 2–4 года – 11 (39,3%), 5–7 лет – 5 (17,9%), 8–9 лет – 3 (10,7%) больных.

В неврологическом статусе кроме гиперкинетического синдрома выявлялась умеренная сухожильная гиперрефлексия. У ребенка с ревматическим поражением нервной системы диагностированы диффузная мышечная гипотония,


Экспериментальные и клинические исследования

хореиформные гиперкинезы. У всех больных гиперкинетический синдром сопровождался поведенческими нарушениями различной степени выраженности (эмоционально-волевые нарушения, гипердинамический синдром с дефицитом внимания, фобический синдром).

При офтальмологическом исследовании на глазном дне у большинства пациентов патологии не обнаружено, у 5 детей имелась ангиопатия сетчатки. Компьютерная томография головного мозга не выявила патологических изменений. Биохимическое исследование крови (билирубин, печеночные трансаминазы, медь, мочевая кислота) также не показало отклонений от нормы.

При электроэнцефалографии у 20 больных в исследуемой группе (у 18 детей с тиками (69,2%), у 1 ребенка с логоневрозом и 1 больного ревматическим поражением нервной системы) установлено увеличение амплитуды и индекса β-ритма, нарушение его зонального распределения, снижения индекса а-ритма. Выявлен паттерн в виде высокоамплитудного βритма 18-22 Гц, 20-50 мкВ (в единичных случаях до 70 мкВ), что является превышением нормы в 2-4 раза. В-Ритм был модулирован в веретена с гиперсинхронизацией и нарушением его зонального распределения (распространением на височные и теменные отделы).

В сыворотке крови детей с тикозными гиперкинезами определялся уровень содержания норадреналина (119,0 \pm 60,8) пг/мл. В сыворотке крови детей контрольной группы уровень содержания норадреналина составил (452,7 \pm 155,5) пг/мл (рисунок).

Концентрация норадреналина в сыворотке крови детей с тикозными

гиперкинезами

При анализе полученных результатов выявлено, что уровень содержания норадреналина в сыворотке крови больных был достоверно ниже, чем у здоровых детей (p < 0,05), что отражает нарушение продукции норадреналина или ускорение его метаболизма при рассматриваемой патологии. Корреляции между уровнем содержания норадреналина в сыворотке крови больных и длительностью заболевания не выявлено (r = 0,12). Корреляции между возрастом и уровнем содержания норадреналина в сыворотке крови больных и здоровых детей также не установлено (r = 0,2). Таким образом, снижение содержания норадреналина в сыворотке при тикозных гиперкинезах может крови рассматриваться как признак данного заболевания. Учитывая роль норадреналина как тормозного медиа-

Федосеева И.Ф., Попонникова Т.В., Веремеев А.В. Состояние обмена норадреналина у детей с тикозными гиперкинезами

тора в коре больших полушарий, в частности в лобной коре, его дефицит может быть одной из причин развития тикозных гиперкинезов, эмоционально-волевых и поведенческих нарушений у детей.

Заключение

В результате проведенного исследования выявлено снижение уровня содержания норадреналина в сыворотке крови детей, страдающих тикозными гиперкинезами с эмоционально-волевыми и поведенческими нарушениями, что свидетельствует об участии обмена норадреналина в формировании данной патологии.

Литература

- 1. *Вид В.Д.*, *Попов Ю.В*. Клиническая психиатрия. СПб., 2000. 327 с.
- 2. Ещенко Н.Д. Биохимия психических и нервных болезней. СПб.: Изд-во СПбУ, 2004. 143 с.

- з. *Зыков В.П.* Тики детского возраста. М., 2002. 195 с.
- 4. *Коган Б.М., Дроз∂ов А.*3. Определение катехоламинов в психиатрии. М., 1998. 290 с.
- 5. *Лис А.Дж.* Тики. Пер. с англ. М.: Медицина, 1989.
- 6. Острейко Т.Я. Клинические проявления и показатели нейромедиаторного обмена синдрома Туретта у детей: Автореф. дис. ... канд. мед. наук. М., 1992. 27 С.
- 7. Петрухин А.С., Бобылова М.Ю. Современные представления об этиологии и патогенезе тиков // Невролог. журн. 2004. № 4. с. 47-52.
- 8. *Фесенко Ю.А., Лохов М.И., Рубин Л.П.* Современный подход к диагностике и лечению тикозных расстройств у детей // Рус. мед. журн. 2005. Т. 13. № 15. С. 973–978.
- 9. *Чутко Л.С.* Школьная дезадаптация в клинической практике детского невролога. СПб., 2006. 53 с.
- 10. Чутко Л.С. Синдром дефицита внимания с гиперактивностью и сопутствующие расстройства. СПб., 2007. 136 с.
- 11. Berrige C.W., Arnsten A.F., Foote S.L. Noradrenergic modulation of cognitive function: clinical implications of anatomical, electrophysiological and behavioral studies in animal models // Psychol. Med. 1993. V. 23. P. 557–564.
- Jankovic J. Tourette's syndrome // N. Engl. J. Med. 2001. V. 345.
 P. 1184–1192.

Поступила в редакцию 30.03.2009 г.

Сведения об авторах

Федосеева И.Ф. - ассистент кафедры неврологии, нейрохирургии и медицинской генетики Кемеровской государственной медицинской академии (г. Кемерово).

Попонникова Т.В. - д-р мед. наук, профессор кафедры неврологии, нейрохирургии и медицинской генетики Кемеровской государственной медицинской академии (г. Кемерово).

Веремеев А.В. - научный сотрудник, НППЛ реконструктивной хирургии сердца и сосудов с клиникой СО РАМН (г. Кемерово).

Для корреспонденции

Федосеева Ирина Фаисовна, тел.: 53-77-64, +7-905-949-2248, e-mail: irenf1@rambler.ru