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ABSTRACT

Background. Nowadays many efforts are taken in searching for Parkinson’s disease biomarkers, especially
for an early recognition of the disease. The gut microbiota is one of the potential sources of biomarkers,
changes in the composition of which in PD are actively studied.

The aim of this study is to identify microbiota biomarkers in the Parkinson’s disease with an estimated
accuracy of the diagnostics, including differential diagnostics, relative to other neurological diseases for
patients of the Russian population.

Material and methods. One hundred ninety-two metagenomics profiles from patients with Parkinson’s
disease (n = 93), people with other neurological diagnoses (z = 33), and healthy controls (» = 66) were
included in this study. These profiles were obtained with amplicon sequencing of bacterial 16S rRNA genes.
Classifying models were made using the naive Bayes classifier, the artificial neural network, support vector
machine, generalized linear model, and partial least squares regression.

As a result we established that an optimal classification by the composition of the gut microbiota on the
validation sample (sensitivity 91.30%, specificity 91.67% at 91.49% accuracy) amid patients was demonstrated
with a naive Bayes classifier using the representation of the following genera as predictors: Christensenella,
Methanobrevibacter, Leuconostoc, Enterococcus, Catabacter, Desulfovibrio, Sphingomonas, Yokenella,
Atopobium, Fusicatenibacter, Cloacibacillus, Bulleidia, Acetanaerobacterium, and Staphylococcus.

Conclusions. Information of the gut microbiota taxonomic composition may be used in differential
diagnosis of Parkinson’s disease.
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PE3IOME

Beepenne. B nacTosmmit MOMEHT BeAeTCs aKTUBHAA paboTa Mo noucky 6nomaprepos 6ore3uu Ilapruucona
(BII), B yacTHOCTM AASL IPOBEAEHMS PaHHEH AMATHOCTMKM AAHHOTO 3a6oaeBanmsa. OAHMM M3 HOTEHIMAAD-
HBIX MCTOYHMKOB GMOMAPKEPOB ABASETCSA KMIIEYHAS MUKPOOMOTA, M3MEHEHNS B cocTaBe Kotopou npu BIT
AKTUBHO M3YYaAIOTCA.

IJeasro pAaHHOJ paboThl IBAAETCS UAEHTUPUKALMA MUKPOOUOTHBIX Gruomapkepos BII ¢ oneHeHHOM TOYHO-
CTBIO AMATHOCTHKY, B TOM 4iCAe U AnbdepeHnnarbHOM, OTHOCUTEABHO APYIUX HEBPOAOIMYECKUX 3a60Ae-
BaHUM AAf HaIMEHTOB POCCUICKON HMONMYAALUN.

Marepuaarsl M MeTopbl. B mccaepoBanue GbiAO BKAIOYEHO 192 MeTareHOMHbIX HPO(PUAA KUIIEYHONH
MUKPOGMOTHI, IOAYYEHHBIX B PE3yAbTAaTe aMIAMKOHHOTO CekBeHMpoBaHms GakrepuarsHou 16S pPHK or
nauueHToB ¢ 6oaesusio ITapruncona (n = 93), AuL KOHTPOABHOI Ipynns! (7 = 66) ¥ APYTUMU HEBPOAOTH-
veckumu 3a6oresanuamu (n = 33). Ars cozpanmsa KAACCUDUUUPYIOUIMX MOAEAEN UCIOAB30BAAY HAVMBHBIIA
6ariecoBCKMil KAaCCU(PUKATOP, UCKYCCTBEHHYIO HEMPOHHYIO CETh, MAWIMHY ONOPHBIX BEKTOPOB, 0600IEH-
HYIO AVHENHYIO MOAEAb M PErpeccuio METOAOM YaCTHUYHBIX HAMMEHbIINX KBaAPATOB.

Pesyabratel. OnTumManbHble TOKA3aTeAN KAACCUPUKALMM MAUMEHTOB MO COCTABY KMUUIEYHON MUKPOOUOTHI
Ha BaAMAAUMOHHONW BbIGOpKe (wyBcTBUTEABHOCTH 91,30%, cnemmdwuunocts 91,67% mnpm ToYHOCTH B
91,49%) mpOAEMOHCTPUPOBAA HAUBHBI (alieCOBCKMII aATOPUTM NPU MUCIOAB30BAHMM NPEACTABAEHHOCTH
MUKPOOpPranu3mMoB popos Christensenella, Methanobrevibacter, Leuconostoc, Enterococcus, Catabacter,
Desulfovibrio, Sphingomonas, Yokenella, Atopobium, Fusicatenibacter, Cloacibacillus, Bulleidia, Acet-
anaerobacterium wu Staphylococcus B KayecTBe MPeAUKTOPOB.

BeiBoabl. VIH(oOpManmsa 0 TaKCOHOMMYECKOM COCTaBe KUIIEYHON MUKPOOGMOTHI MOXKET OBITh MCIOAB30BaHA
AAsL IpoBeAeHUs AuddepeHuarbHol AnarnocTnku 6oaesun Ilapkuncosa.

KaroueBsie caoBa: MI/IKpO6I/IOTa KMIIe4YHuKa, 60A€3Hb HapKI/IHCOHa, 16S CEKBEHMPOBaHME, MAIIMHHOE
06y‘I€HI/Ie, AMATHOCTHUKA.

KonpaurT uHTepecoB. ABTOpPBI AEKAGPUPYIOT OTCYTCTBME SABHBIX M NOTEHIMAABHBIX KOH(MAUKTOB UHTEPE-
COB, CBSI3aHHBIX C MyOAMKALMeN HACTOALLEN CTAThU.

Ucrounur ¢punancuposanus. PaGora BoimorHeHa npu moaAepskke rpanra nporpammsl YMHMK (aorosop
Ne 7588TV/2015 ot 22.09.2015) u rpanta POOU Ne 18-415-703004.

CoorseTcTBMe OPMHLMIAM 3TUKM. Bee mannenTs! moamncarn nHbopmuposanHoe coraacue. Viccaepoanne
0p06GpeHo HezaBucuMbIM TdeckuM Komurerom Cu6I'MY (nporokoa Ne 3669 or 22.12.2014).

Aast yuuposanus: Ilerpos B.A., Aaucpuposa B.M., Caareixosa V.B., XKyxkosa V.A., Kykosa H.T'., Aopo-
¢deesa 10.b., Vkkepr O.I1., Muponosa 10.C., Turosa M.A., Cazonos A.D., Kapnosa M.P. Aunarnocruue-
CKMII MOTEHIMAA KUIIEYHOM MUKpOoOnoTsl npu Goresun [lapkurcona. broaremenv cubupckori meduyurot.
2019; 18 (4): 92-101. https;//doi.org: 10.20538/1682-0363-2019-4-92-101.

blonneTteHb cMbUpcKoit meamumnHbl. 2019; 18 (4): 92-101 93



Metpos B.A., Ainduposa B.M., Cantbikoa U.B. u gp. /lMarHOCTUYECKUIA MOTEHLIMA/ KULLEYHOW MUKPOBUOTLI Npu 60/1e3HM MapKUHCoHa

INTRODUCTION

Among neurological diseases, Parkinson's disease
(PD) occupies an important place - a chronic
neurodegenerative disease that affects dopaminergic
neurons of the substantia nigra of the brain and
manifests itself primarily in the form of motor
disorders: rigidity, trembling, postural instability.
Currently, about 4 million people worldwide are
affected by PD, and its prevalence in the population
is projected to only increase [1]. Due to the lack of
methods for radical therapy of the disease, on the
one hand, and a long period of the asymptomatic
course, on the other hand, much attention is paid
to the search for approaches to the early diagnosis
of PD, the identification and study of new disease
markers. Based on studies by N. Braak et al. [2],
during which the early involvement of intestinal
neurons in the process of neurodegeneration was
established, the gastrointestinal tract is considered
as one of the promising sources of biomarkers.

It is known that the human intestine serves as a
habitat for a complex multicomponent communi-
ty consisting of trillions of symbiotic microorgan-
isms, including bacteria, archaea, protozoa, fungi
and viruses. This community, also called microbiota
or microbiome, plays an important role in the life
of the host organism, taking part in digestion [3],
secretion of vitamins and biologically active sub-
stances [4], maintaining the physiological level of
inflammation in the intestine, thereby protecting
against the introduction of pathogens [5]. It has
been shown that for many diseases, both systemic
and occurring at the local level, a change in the
composition of the intestinal flora occurs [6]. A
similar fact is also characteristic of PD - over the
past 3 years, several studies have been carried out
confirming changes in the representation of intes-
tinal microorganisms in this disease [7—12]. Three
papers proposed algorithms based on the use of
microbiota as a predictor for the diagnosis of PD
[9, 11, 12], but their use is limited. First, the list of
predictor microorganisms found for different popu-
lations varied, which is most likely the result of an
ethnographic and geographical peculiarity of the
composition of the microbiota [13]. Secondly, the
selection of coefficients and the assessment of the
accuracy of diagnostic algorithms were carried out
on the same sample, which leads to a distortion in
the assessment of the prognostic properties of the
proposed models [14]. It is also unknown whether
the microbiotic landscape of the intestine in PD
is unique only for this disease or whether similar
changes are also observed in other severe neurode-

generative and neuroinflammatory diseases, which
can affect the specificity of diagnostics using mi-
crobiota.

The aim of this study is to identify microbiotic
biomarkers of PD with an estimated accuracy of
diagnosis, including differential, relative to other
neurological diseases for the Russian population.

MATERIALS AND METHODS

The study included 192 metagenomic profiles
of the intestinal microbiota obtained as a result
of amplicon sequencing of the V3-V4 fragment of
the bacterial 16S rRNA gene, which were analyzed
and published previously by our team [15, 16]. All
samples were divided into two groups: experimen-
tal, which included 93 metagenomic profiles from
patients with a confirmed diagnosis of Parkinson’s
disease, and control. The control group included
66 samples from the healthy control group without
signs of neurodegenerative and neuroinflammato-
ry diseases and 33 patients with other neurological
diseases: multiple sclerosis — 15 people, essential
tremor — 10, idiopathic familial dystonia - 5 pa-
tients, and one patient each with diagnoses “Multi-
ple systemic atrophy”, “diffuse Lewy body disease”
and “acute disseminated encephalomyelitis.”

The plan and conduct of the research work was
fully consistent with the principles of Good Clini-
cal Practice and the Helsinki Declaration (including
amendments). Written informed consent was obtained
from all patients or from their close relatives and
those officially recognized as responsible for the pa-
tients at the time of the study. Patients and their rel-
atives were informed about the nature of the study,
its purpose and possible complications, and could
also unilaterally interrupt the study at any time.

The data from the sequencer was analyzed in the
QIIME 1.9.1 software [17]; to determine the taxo-
nomic position of the reads, GreenGenes databases
version 13.5 and HITdb [18, 19] were used. Sta-
tistical analysis was performed using the program-
ming language R [20]. Beta diversity was calculat-
ed using multidimensional scaling in the weighted
Unifrac metric [21] with data normalization using
the CSS algorithm [22]. The influence of the diag-
nosis, gender, and age of the patients on the total
composition of the microbiota was determined by
the ANOSIM algorithm and using nonparametric
variance analysis with a confidence rating of 9999
permutations in the vegan package [23]. To search
for differences in the taxonomic composition of
metagenomes at the genus level, the fitZig statisti-
cal model of the metagenomeSeq package was used
[22]. The differences were considered significant at
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p <0.05 after applying the correction for multiple
comparisons according to the Benjamini-Hochberg
method.

Feature selection and training algorithm were
carried out in the caret package [24] of the R
language. The following algorithms were used for
classification: a naive Bayes classifier, a single-layer
artificial neural network, a support vector machine
using a radial basis function, a generalized linear
model and partial least squares regression. Before
training, the data was centered and scaled. The en-
tire sample was divided into two unequal parts: the
training (146 samples, or 75% of the total sample)
and the test (46 samples, or 25% of the total sam-
ple). Samples were randomly and equally distribut-
ed in the samples. On the training sample, the co-
efficients of the models were adjusted to assess the
classification accuracy (the quotient of the correct
predictions and the total number of predictions)
with a 10-fold cross-check. After training, the mod-
els were tested on a test sample with the calculation
of the sensitivity and specificity of the classification.

RESULTS

When visualizing the beta diversity of micro-
biota in the space of the first and second main
coordinates (Fig. 1), there was no linear separabil-
ity between the experimental and control groups,
however, clustering of patients depending on the
disease was determined: for example, patients with
Parkinson’s disease were located at the bottom
of the graph, patients groups of healthy control
groups — in the upper left, patients with other
neurological diseases were closer to the middle of
the graph. Nonparametric analysis of variance and
the ANOSIM algorithm confirmed this observa-
tion: the determination coefficient for the vari-
able “diagnosis” was 0.103 (p = 0.0001) and 0.123
(p = 0.0001), respectively. The age of the patients
also influenced the total taxonomic composition
of metagenomes according to the results of non-
parametric analysis of variance, but the strength
of the effect was low (R2 = 0.019, p = 0.0007).
Gender in this sample did not contribute to beta
diversity.
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Fig. 1. Graphs of multidimensional non-metric scaling of the intestinal microbiota in the space of the first and second
main coordinates
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According to the discovered contribution of age,
the search for differences in the composition of the
intestinal microbiota at the birth level between the
control and experimental groups for choosing a list
of predictors was carried out taking into account
age as covariates. As a result, it was found that
in the microbiota of patients of the experimental
group, as compared to the combined control group,
the content of bacteria of the genera Acetanaero-
bacterium, Anaerococcus, Atopobium, Bulleidia,
Cloacibacillus, Christensenella, Catabacter, De-
sulfovibrio, Staphylococcus, Succinivibrio-75, Yo-

bacter, and the representation of Fusicatenibacter
decreases (Table 1).

In the list obtained by the recursive exclusion
algorithm, a search was made for a combination
of predictors capable of giving the highest accura-
cy in classifying patients (Fig. 2, a). As a result, a
combination of 14 genera of microorganisms was
found that has a potentially maximum classifica-
tion accuracy (0.77 = 0.09%): Christensenella,
Methanobrevibacter, Leuconostoc, Enterococ-
cus, Catabacter, Desulfovibrio, Sphingomonas,
Yokenella, Atopobium, Fusicatenibacid, Cloac,

ken, Sphingomonas, Papillibacter, Oxalobacter, Cloac  Acetanaerobacterium  and  Staphylo-
Leuconostoc, as well as the Archean Methanobrevi- coccus.

Ta6auma 1

Table 1

Differences in the content of microorganisms at the genus level used to create classification models
Pasamuns B COAePKaHMM MUKPOOPIaHM3MOB Ha YPOBHE POAOB, MCIIOAB3OBAHHBIE AASl CO3AAHMS KAACCUDUUMPYIOLMX MOAEAENH

Genus Samples Samples, control OTU, G20 Control logFC »
Poa O6pasyos, G20 | O6pa3uoB, KOHTPOAD OTE, G20 OTE, xOHTPOAB
Bulleidia 33 11 145 44 -1.107 0.00044
Staphylococcus 31 15 79 33 -0.940 0.00001
Succinivibrio 34 16 203 100 —-0.863 0.01428
Yokenella 44 22 228 54 -0.779 0.01285
Cloacibacillus 44 12 193 64 -0.745 0.01285
Desulfovibrio 55 36 364 153 —0.661 0.01285
p-75-a5 40 15 152 48 —-0.649 0.02296
Acetanaerobacterium 30 5 50 13 —-0.643 0.00294
Enterococcus 88 62 893 447 -0.619 0.03285
Christensenella 94 85 2 460 1 140 -0.597 0.03803
Sphingomonas 45 12 106 36 -0.578 0.01285
Papillibacter 63 37 310 134 -0.542 0.03571
Oxalobacter 48 23 149 69 —-0.541 0.03462
Anaerococcus 15 9 44 18 -0.538 0.02296
Methanobrevibacter 76 40 443 179 —-0.532 0.01285
Catabacter 80 61 851 381 —0.488 0.04690
Leuconostoc 56 36 202 98 —-0.466 0.03421
Atopobium 55 36 123 72 —-0.333 0.04690
Fusicatenibacter 91 95 1523 1919 0.726 0.03421

Note. Samples, G20 - the number of patients with Parkinson’s disease having this OTU as part of the intestinal microbiota; sam-
ples, control — the number of patients in the control group having this OTU as part of the intestinal microbiota; OTU, G20 — the
number of counts of this OTU in the group of patients with Parkinson’s disease; OTU, control — the number of counts of this OTU
in the control group; logFC — the multiplicity of differences in the representation of OTU, logarithmically based on base 2; positive
values of logFC indicate an increase in the content of OTU in patients of the joint control group; p-values are adjusted for multiple
Benjamini-Hochberg comparisons.

IIpumeuanne. O6pasyos, G20 — koAnyecTBO nayueHTOB ¢ G6oae3nbio Ilapkuucona, nmeromux pannyio OTE B cocraBe xumednoit
MUKPOGHOTHI; 06Pa3IOB, KOHTPOAb — KOAMYECTBO IALMEHTOB KOHTPOABHOI rpymusl, umeomux AanHyio OTE B cocraBe kmueyHOi
mukpo6uots; OTE, G20 — xoamvecrso npourennii Aannoit OTE B rpynme nanuentos ¢ Goaesnsio Ilapkuncona; OTE, koHTpoAb —
koandectBo npourennit panHoit OTE B konrpoasnoit rpymnme; logFC — kpataocts pasanmunmsa B npeacraBaennoctr OTE, aorapud-
MMpPOBaHa IO OCHOBaHMIO 2; moroskurerbHble 3HadeHus logFC ceuaereabctByor o mosbimenun copepskauuss OTE y nmanmenros
00bEAVHEHHOM KOHTPOABHOJ TPYIIIBI; p-3HAYEHMA HPMBEAECHBI C NONPABKOV Ha MHOJKECTBEHHOE CpaBHeHme 10 beHAskaMmuM —
Xox6epry.
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When training models on the training sample,
the following results were obtained (Fig. 2, b). The
machine of support vectors with a radial basis func-
tion had the highest average classification accuracy
during cross-checking in 77%, the average accura-
cy of the naive Bayesian algorithm with a nucle-
ar estimate of the distribution density was slightly

were the same and accounted for 79%. Partial least
squares regression had the same average classifica-
tion accuracy as the naive Bayesian algorithm, but
the median accuracy for this algorithm was 73%.
A single-layer neural network with a similar median
classification accuracy showed a lower average ac-
curacy of 75%. The lowest average and median ac-
curacy indicators had a generalized linear model —

lower and amounted to 76%, while the medians of

the classification accuracy using these algorithms 72 and 74%, respectively.
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Fig. 2. The dependence of the accuracy of the prediction on the number of variables (a). The circles indicate different

classification options depending on the number of included features, the shaded circle — the best option; & — medians of

classification accuracy. Black dots are medians; the borders of the boxes show the first and third quartiles, the length

of the mustache is 1.5 times the length of the inter-quartile range; open dots indicate outliers. SVM — reference vec-

tor machine, NB — naive Bayesian classifier, GLM — generalized linear model, PLS — partial least squares regression,
NNET - artificial neural network

Table 2
Ta6aumga 2

Validation model classification test results

Pe3yapTaTsl NpoBepKYM KA2CCUDULMPYIOMMX MOAEAE Ha BaAMAALMOHHOM BbIGOpKe

Model Accuracy,% (95% CI) Sensitivity, % Specificity, %
Moaeab Tounocts, % (95%-it AVI) YyBCTBUTEABHOCTD, Yo Crenudndsocts, %
NB 91.49 (79.62; 97.63) 91.30 91.67

SVM 82.98 (69.19; 92.35) 100.00 66.67

PLS 76.6 (61.97; 87.7) 65.22 87.50
NNET 76.6 (61.97; 87.7) 69.57 83.33

GLM 63.83 (48.52; 77.33) 65.2 62.50

Note. NB is a naive Bayesian classifier, SVM is a support vector machine, PLS is a partial least squares regression, NNET is an

artificial neural network, GLM is a generalized linear model.
Ipumeyanne. NB — naumsubni GasiecoBckmit kaaccudurarop, SVM — mammua onopHeix BekTOpoB, PLS — perpeccus meroaom
JacTu4HbIX HanMeHbyx kBaApatoB, NNET — uckyccrsennas HeitponHas cets, GLM — o6o0ujeHHas AMHENHAA MOAEAb.
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As a result of testing models on a validation
sample, it was found that the naive Bayes algo-
rithm demonstrated the optimal sensitivity, spec-
ificity, and accuracy of determining the presence
of PD by the composition of the intestinal mi-
crobiota of patients (Table 2). The reference vec-
tor machine showed the highest sensitivity and
lowest classification specificity. Classifiers based
on the application of the method of partial least
squares and a single-layer neural network showed
the same classification accuracy, while the neural
network was characterized by higher sensitivity,
but less specificity. The generalized linear mod-
el turned out to be the least suitable for deter-
mining PD based on an assessment of the char-
acteristics of the composition of the intestinal
microbiota.

DISCUSSION

It was shown that the structure of the micro-
biome in PD is characterized by a rather high de-
gree of uniqueness, which potentially allows the use
of information on its taxonomic composition for
diagnosing the disease, including differential with
respect to other severe neurological (neurodegen-
erative and neuroinflammatory) diseases. Given the
early appearance of signs of neurodegeneration in
the nervous system of the intestine [25], this algo-
rithm could potentially be effective for diagnosing
at an early stage of the disease, before the first
clinical signs appear.

As a result of studies on this topic, conducted
by other teams, the suitability of data on the com-
position of microbiota for differentiating patients
with PD and healthy individuals was also shown [9,
11, 12]. The developed classification algorithms are
characterized by relatively high specificity up to
90%, but low sensitivity, reaching 66.7% only when
using additional clinical information [9]. This lim-
its the application of this approach in real clinical
practice without significant improvement.

The classification algorithms proposed in ear-
lier studies were based on a generalized linear
model and ROC analysis, which do not give good
prediction quality in the absence of linear class
separability. Moreover, the fitting and testing of
the algorithms was carried out on the same sam-
ple, which leads to retraining - overstating the
classification quality parameters - accuracy, spec-
ificity and sensitivity of the algorithm [14]. The
structure of metagenomic data is highly complex;
for this reason, the use of validation samples to
verify the quality of classifiers is especially im-
portant [26].

As a result of this study, the accuracy of the
classification of patients based on the taxonomic
composition of the intestinal microbiota relative to
PD in the validation sample was first assessed. Ob-
tained during the study, the sensitivity parameters
of patient classification ranged from 65.22 to 100%,
specificity from 62.50 to 91.67%. Interestingly
enough, the optimal classification parameters (sen-
sitivity 91.30%, specificity 91.67% with an accuracy
of 91.49%) were obtained using a technically simple
naive Bayes classifier with a nuclear distribution
density estimate. In this case, this algorithm turned
out to be the most suitable for diagnostics, since it
is more stable on samples of relatively small size,
which include the sample used in our study, and
also works quite efficiently with complex structure
data [27].

The list of predictors used to train classification
models used in various studies also varied. On the
one hand, this can be explained by a different ap-
proach to choosing the level of taxa used for clas-
sification, as well as using different bioinformatics
analysis algorithms. In two studies, information on
the composition of microbiota at the family lev-
el was used for this purpose [9, 11]; in another
study, data on the representation of OTUs were
used [12]. In the framework of this study, informa-
tion on the generic composition of the microbiome
was used to construct the classifier. On the other
hand, differences in the taxonomic composition of
microbiota observed between different human pop-
ulations could also influence the list of predictors
[13]. For this reason, the use of information on
the functional composition of microbiota, due to
its relative homogeneity, may be the best option
for creating a classifier suitable for use by residents
of different countries. An important fact is that in
this study, not only healthy people, but also pa-
tients with other neurological diseases were used as
a control group, which could also affect the final
composition of the list of biomarkers.

CONCLUSION

As a result of the study, it was found that in-
formation on the taxonomic composition of the
intestinal microbiota could potentially be used for
differential diagnosis of Parkinson’s disease. The
development of new non-invasive biomarkers for
the diagnosis of PD, including at the preclinical
stage, will allow the treatment of the disease to
begin even before the complete loss of dopaminer-
gic neurons, which will improve the quality of life
of patients.
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Bksag aBTOpOB

ITerpos B.A. — paspaGorka KOHLeNMM U AM3aiHA; aHA-
AM3 M MHTepIpeTanus AAHHBIX; OGOCHOBaHME PYKONMUCH.
Aaucuposa B.M. — o6ocHoBaHne pykomucy u IpoBepKa Kpu-
TUYECKY BaKHOTO MHTEAACKTYaABHOTO COAEPIKaHNUA, OKOHYA-
TeABHOE YTBEpIKAEHNE AAA MyGankanuyu pykomucu. CaaTeiko-
Ba VI.B. — aHaAu3 u mHTepnperanus AaHHbBIX; 0G0CHOBaHME
pyKOMMCH ¥ IPOBEPKA KPUTHIECKN BasKHOTO MHTEAAEKTYaAb-
HOro copepskanus. JKykosa VI.A. — anaan3 u uHTepIperanus
AaHHbBIX, OOOCHOBAaHME PYKONMUCH ¥ IPOBEPKA KPUTUIECKH
Ba>KHOTO MHTEAAEKTyaAbHOTO copepskanma. JKykosa H.I. —
060CHOBaHIE PYKONMCH ¥ IPOBEPKA KPUTHUECKM BASKHOTO
MHTEAAEKTYaABHOTO COAEPIKAHMA, OKOHYATEABHOE YTBEpPIK-
AeHue AAs nyGamkanuu pykomucu. Aopodeesa F0.B. — pas-
paGoTka KOHUENuMM ¥ AM3aiHA, AHAAM3 M MHTEPIpPETanusi
AansbiX. VIkkepr O.II. — aHaAM3 u uMHTepmpeTanysa AAHHBIX,
060CHOBaHNE PYKONMCH ¥ IPOBEPKA KPUTHUECKM BASKHOIO
MHTEAAEKTYaABHOTO copepskanuda. Turosa M.A. — anaaus u
MHTepIpeTanus AaHHbIX; 060CHOBaHMe pykomucu. Mupono-
Ba [0.C. — aHaAm3 u mHTepuperanus AaHHBIX, 0GOCHOBa-
une pykomucu. Cazonos A.D. — pa3paGoTKa KOHIENLUM U
AM3aliHa, aHAAM3 ¥ MHTEpIpeTanus AAHHBIX, 00OCHOBaHME
PYKOIMCH M NPOBEPKa KPUTHMYECKM BasKHOTO MHTEAACKTY-
AABHOTO COAEPIKaHMA; OKOHYATEABHOE YTBEPSKACHME AAfA
ny6ankagyuu pykonucu. Kapnosa M.P. — o6ocuosaune py-
KOIMCH M IPOBEPKa KPUTUYECKNM BAaKHOTO MHTEAAEKTYaAb-
HOTO COAEp>KaHM.
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