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ABSTRACT

Aim. To consider application of convolutional neural networks for processing medical images in various fields of 
cardiology and cardiac surgery using publications from 2016 to 2019 as an example.

Materials and methods. In the study, we used the following scientific databases: PubMed Central, ArXiv, 
ResearchGate. The cited publications were grouped by the area of interest (heart, aorta, carotid arteries).

Results. The general principle of work of the technology under consideration was described, the results were 
shown, and the main areas of application of this technology in the studies under consideration were described. 
For most of the studies, sample sizes were given. The author’s view on the development of convolutional neural 
networks in medicine was presented and some limiting factors for their distribution were listed.

Conclusion. A brief overview shows possible areas of application of convolutional neural networks in the fields of 
cardiology and cardiac surgery. Without denying the existing problems, this type of artificial neural networks may 
help many doctors and researchers in the future.
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РЕЗЮМЕ

Рассмотрены области применения сверточных нейронных сетей для обработки медицинских изображений 
в различных сферах кардиологии и кардиохирургии на примере публикаций с 2016 по 2019 г.

В данной работе использовались следующие базы научных статей: PubMed Central, ArXiv, ResearchGate. 
Приведенные работы структурировались по области интереса (сердце, аорта, сонные артерии). 

Описан общий принцип работы рассматриваемой технологии, показаны результаты и рассмотрены 
основные области применения данной технологии в анализируемых  работах. Для большинства приведенных 
исследований приведены объемы выборок, авторское видение развития сверточных нейронных сетей в 
медицине и перечислены некоторые ограничивающие факторы для их распространения.

Показаны возможные сферы применения сверточных нейронных сетей в области кардиологии и кардио-
хирургии. Не отрицая существующие проблемы, такой тип искусственных нейронных сетей в будущем 
может стать верным помощником для широкого спектра врачей и исследователей.

Ключевые слова: сверточные нейронные сети, CNN, FFR, кардиология, патология сердечно-сосудистой 
системы, стеноз, детекция.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, 
связанных с публикацией данной статьи.

Источник финансирования. Работа выполнена при поддержке комплексной программы 
фундаментальных научных исследований СО РАН в рамках фундаментальной темы НИИ КПССЗ № 0419-
2021-001 «Разработка новых фармакологических подходов к экспериментальной терапии атеросклероза 
и комплексных цифровых решений на основе искусственного интеллекта для автоматизированной 
диагностики патологий системы кровообращения и определения риска летального исхода» при финансовой 
поддержке Министерства науки и высшего образования Российской Федерации в рамках национального 
проекта «Наука и университеты».

Для цитирования: Онищенко П.С., Клышников К.Ю., Овчаренко Е.А. Искусственные нейронные сети в 
кардиологии: анализ графических данных. Бюллетень сибирской медицины. 2021; 20 (4): 193–204. https://
doi.org/10.20538/1682-0363-2021-4-193-204.

__________________________

Bulletin of Siberian Medicine. 2021; 20 (4): 193–204

Onishchenko P.S., Klyshnikov K.Yu., Ovcharenko E.A. Artificial neural networks in cardiology: analysis of graphic data

INTRODUCTION

When examining a patient with cardiovascular 
diseases, a physician receives textual and numerical 
information (for example, medical history and blood 
test results), as well as graphic data (the results of com-
puted tomography (CT), magnetic resonance imaging 
(MRI), echocardiography, scintigraphy, and X-ray), 
which require long-term analysis and assessment [1, 
2]. It takes a highly qualified expert up to 20 minutes 
to analyze MRI scans of a patient at two time points 
of the cardiac cycle – the end-diastole and end-sys-
tole [3]. It is a tedious and time-consuming process, 
that could lead to a diagnostic error [4]. However, in 
addition to the qualitative description, there is another 
important aspect of the quantitative assessment of im-
ages – linear and volumetric measurements for diag-
nosis, prognosis, treatment monitoring, and research 
purposes.

With the development of deep learning methods, 
such as neural networks, which have been used for 

image segmentation [5], object detection [6], and clin-
ical decision support systems [7, 8], and with their in-
creased availability [9, 10], it became possible to apply 
these methods in medical imaging [11–13]. In general, 
neural networks differ significantly from algorithmic 
approaches, which has been the main reason for their 
widespread use and implementation in the field of 
medicine. They have the ability to independently es-
tablish a relationship between input and output values 
via unsupervised training, which results in successful 
extraction of implicit or multifactorial relationships 
from data and better image interpretation [14]. 

Moreover, growth in computing performance, pri-
marily due to graphics processing unit (GPU) com-
puting [15], and availability of open-source neural 
networks make them accessible to many researchers 
[16]. Taking into account these factors, as well as 
the existence of large databases (for example, Ima-
geNet [17], Cardiac CTA [18], ACDC [19]), the task 
of developing tools for reducing the contribution of 
the “human” factor to the analysis of medical images 
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remains relevant. In the period from 2008 to 2018, 
the number of publications dedicated to the machine 
learning approaches in medical image analysis in-
creased by 8 times [20]. This paper presents several 
previous publications on the use of neural networks 
for medical image processing in various fields of car-
diology and cardiac surgery in the period from 2016 
to 2019.

THE CONCEPT OF A CONVOLUTIONAL 
NEURAL NETWORK

The history of neural networks began with the 
primitive feed-forward artificial neural networks 
(ANN) (usually known as the perceptron [21]), 
which were the first and simplest types of ANN. Fur-
ther development of architectures led to the forma-
tion of deep learning ANN, which are characterized 
by complex topology and larger number of intercon-
nected neurons, compared with perceptrons. These 
ANN imitate human cognition, making an associa-
tion based on previous experience with the help of 
training, during which the probability of accurate 
object classification increases [22–24]. To date, 
convolution neural network (CNN) is considered to 
be the most effective ANN for image recognition.  
The main feature of this architecture is a convolu-
tional layer. This layer (or set of layers) processes the 
input image (ANN extracts desired features) and then 
passes it to subsequent processing, similar to other 
ANN [25].

Given that CNNs are a type of ANN, they exhibit 
two main features – a need for training and the abili-
ty to switch [1]. To train the ANN, it is necessary to  
present it with a large number of labelled training data, 
where experts pre-select the features – similar to train-
ing of humans [24]. Therefore, the most important 
factor affecting the CNN is the quality of input data, 
primarily accurate segmentation. Another important 
aspect at the stage of developing CNN architecture is 
the structure and volume of data: a small sample or in-
sufficient heterogeneity will lead to a large percentage 
of errors as a result, i.e. to a decrease in the quality of 
object recognition [1].

The ability of CNN to switch implies the  
ability to work with similar data. It is possible  
to conduct pre-training on data from open sources, 
and then fine-tune it for the target task [26, 27]. Both 
features make CNN a promising and accessible tool 
for medical image analysis, and a number of multi-
disciplinary teams have been conducting research in 
this field.

MEDICAL IMAGE PROCESSING USING CNN

Heart
Segmentation and quantitative assessment of car-

diac and myocardial parameters are important in car-
diology for assessing the severity of the initial state 
of the disease (dilatation, hypertrophy, contractile 
disorders, anatomical changes, etc.) and monitoring 
the results of treatment (remodeling, changes in the 
size of chambers). Despite the achieved progress in 
this area, this task is still challenging due to wide 
subject-to-subject anatomical variation. The main re-
search directions in this area are image segmentation 
and classification.

For example, L. Yu et al. (2016) used CNN for fe-
tal left ventricular (LV) segmentation in echocardio-
graphic sequences [28]. Fetal echocardiography is the 
primary modality for evaluating prenatal cardiac func-
tion due to its low cost, harmless nature, and quick 
acquisition. A quantitative analysis of fetal echocar-
diographic images provides important fetal cardiac 
function parameters for early diagnosis of heart dis-
eases.

 The author proposes a dynamic CNN, the training 
of which includes 2 steps: pre-training and fine-tu- 
ning. Pre-training was carried out using images, where 
the neural network divided each pixel into two catego-
ries: a pixel in the region of interest and out of it. The 
training set consisted of 200,000 samples that were 
chosen randomly in 10 manually delineated sequenc-
es. The validation set consisted of 8,000 samples. It 
is worth noting that only the first frame of each echo-
cardiographic sequence was segmented manually, 
which simplified the work of the experts. Thus, the 
dynamic CNN was fine-tuned by deep tuning to adapt 
to the first frame and by shallow tuning to fix the latest 
frame, adapting to the individual features. As a result, 
the segmentation accuracy was 94.5%. Further work 
is aimed at carrying out a quantitative analysis of fetal 
LV functions based on the results obtained using the 
proposed segmentation method. An example of the re-
sults obtained is shown in Fig. 1a.

W. Xue et al. (2018) [29] proposed an architec-
ture for a deep multitask relationship learning net-
work (DMTRL) which incorporates CNN for cardiac  
image representation and two parallel recurrent neural 
networks (RNN) for temporal dynamic modeling of 
cardiac sequences. The proposed network quantifies 
three types of LV parameters (the cavity inside the 
myocardium, regional wall thicknesses, and a cardi-
ac cycle phase). The authors collected MRI images of 
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145 individuals (average age was 58.9 years), with 20 
frames for each cardiac cycle. Compared with the pre-
vious study [30], this ANN demonstrated higher prog-
nosis accuracy with an absolute error of 1.7–10.3% 
for the studied LV parameters.

J.D. Dormer et al. [31] presented a CNN-based 
heart chamber segmentation method for 3D CT with 
5 classes: left ventricle, right ventricle, left atrium, 
right atrium, and background. Chest CT images were 
acquired for 11 patients with the total number of slic-
es ranging from 78 to 154 for each patient, providing 
a large amount of data. The images were processed 
into pixel patches of five classes, 2 500 patches from 
each class for each patient were chosen for CNN 
training and validation. The results were validated by 
calculating the overall accuracy of the classification 
for each segmented region, with the accuracy defined 
as the number of correctly labeled patches from the 
total number of patches for the testing dataset. As a 
result, the accuracy in segmentation of the heart and 
the overall accuracy were 85.6 ± 6.1% and 87.2 ± 

3.3%, respectively. It is worth noting that 11 unique 
cases resulted in such high accuracy of the network, 
despite insufficient heterogeneity of data. Neverthe-
less, this approach seems appropriate only for rare 
diseases, especially using augmentation of the data-
set size due to rotation and scaling without substan-
tial changes [25].

L. Tan et al. (2018) [32] developed a fully auto-
mated algorithm for LV segmentation in cardiac MRI. 
The study utilized the data of 200 subjects with cor-
onary artery disease and regional wall motion abnor-
malities and 1,140 subjects with a combination of nor-
mal and abnormal cardiac functions. The combined 
training data and the manually labeled data were split 
85:15 by the subject for training and cross-validation, 
respectively (i.e. 26, 069 and 9, 860 unique images). 
The developed algorithm demonstrated the median 
Jaccard similarity coefficient of 0.77 ± 0.11. The re-
sult of the input data processing is shown in Fig. 1b. 
Contrary to [31], this work has a large sample of input 
images for both training and validation.

Fig. 1. The segmentation results: a – of successive echocardiographic images shown in [28]; b – of endo- and epicardium slicing 
from the apex to the base obtained using CNN [32]

а

b

Aorta
Aorta segmentation can be used for reconstructing 

its geometry, such as 3D models for further numeri-
cal analysis and preoperative planning, as well as for 
detecting pathological changes. Neural networks in 
this area can be used for assessment and selection of 
appropriate prostheses for transcatheter aortic valve 
replacement (TAVR) procedures.

Attempting to solve the problem of aortic segmen-
tation, D. Wang et al. (2018) [33] developed a novel 

method for CT-MR aortic aneurysm image segmenta-
tion. The standard approach to training the CNN incor-
porates CT and MR images separately. However, this 
approach is time-consuming and inefficient due com-
putational cost of training the ANN. The novelty of the 
proposed CNN is fusion of the parts of the model that 
work with CT and MR images. Such network can un-
dergo end-to-end (complete) training using unlabeled 
CT and MR images in a shorter time period, since trai- 
ning occurs on two types of input data simultaneously. 

Onishchenko P.S., Klyshnikov K.Yu., Ovcharenko E.A. Artificial neural networks in cardiology: analysis of graphic data
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Moreover, the fusion model allows for shared repre-
sentation of CT and MR images showing similar parts 
of the aorta for all image modalities (Fig. 2a). Proces- 
sing images, the CNN segments them into five differ-
ent classes, namely, aortic wall, its lumen, thrombus, 
calcium deposits, and irrelevant parts as background. 
The validation accuracy of the fusion models is 98.5%, 
which is 1.2% more than that of other models. 

Another study in this area was conducted by 
P.M. Graffy et al. (2019) [34] (Fig. 2b), who used 
the fully automated Mask R-CNN algorithm [35] for 
segmentation of aortic calcification. The segmen-
tation algorithm was applied to 9,914 non-contrast  
CT scans of 9,032 asymptomatic adults, who were 
screened for conditions not related to cardiovascular 
diseases [36]. 

Fig. 2. A: The result of CT (left pair) and MR image (right pair) segmentation into 5 classes [33]: red – lumen of the aortic channel; 
green – aortic wall; purple – thrombus; blue – calcium; black – background (a). Segmentation of aortic calcification using Mask 
R-CNN automated algorithm: input image (left); the result of the segmentation (right) presented in [34]; L1 and L4 lines mark the 

area of algorithm application (b)  

а

b

The images were used to estimate the abdominal 
volume and the number of calcifications and assess 
the Agatston score (showing the extent of coronary 
artery calcification) [37]. Statistical processing of 
the results showed that the mean values for the Agat- 
ston score were higher in men (924.2 ± 2,066.2 vs.  
564.2 ± 1,484.2, p < 0.001), the calcium mass was 
222.2 ± 526.0 mg vs. 144.5 ± 405.4 mg (p < 0.001), 
and the abdominal volume – 699.4 ± 1,552.4 ml vs. 
426.9 ± 1,115.5 ml (p < 0.001). The mean score in-
creased with age by 10% per year for the entire cohort. 
Compared with women, men (age 40–60 years) had 
higher calcium scores (91.2% vs. 75.1%, p < 0.001) 
and significantly higher mean Agatston score (age 50–
80, p < 0.001). Thus, in combination with statistical 
methods, CNN allows researchers to quickly obtain 
large amounts of quantitative data and measurements 
and process them with standard methods of medical 

statistics, making this combination a necessary tool 
for scientific research. The authors noted, that this 
study is only the first step towards creating a clinical 
tool for detecting calcifications in the aortic wall.

CORONARY ARTERIES
Diseases of the coronary arteries (CA) may result 

in critical conditions [38, 39], primarily coronary ar-
tery disease, which is the most common cause of death 
worldwide. CNN has the potential to become a valu-
able tool for locating and determining the degree of 
pathological changes in the arteries, especially in mul-
tivessel diseases.

X-ray coronary angiography is a primary imaging 
technique for diagnosing coronary diseases, consis- 
ting of consecutive projection images. E. Nasr-Es-
fahani et al. (2016) [40] used convolutional ANN to 
find and extract CA in X-ray coronary angiography 

deposits, and irrelevant parts as background. The validation accuracy of the fusion models is 

98.5%, which is 1.2% more than that of other models. 

Another study in this area was conducted by P.M. Graffy et al. (2019) [34] (Fig. 2b), who 
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Fig. 2. A: The result of CT (left pair) and MR image (right pair) segmentation into 5 classes [33]: 
red – lumen of the aortic channel; green – aortic wall; purple – thrombus; blue – calcium; black –
background (a). Segmentation of aortic calcification using Mask R-CNN automated algorithm: 
input image (left); the result of the segmentation (right) presented in [34]; L1 and L4 lines mark 

the area of algorithm application (b).
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images. However, low quality resolution and image 
noise complicated processing of such images. Initial-
ly, an input angiogram was preprocessed to enhance 
its contrast. Afterwards, the image was evaluated  
using patches of pixels, and the network determined 
the CA and background regions and extracted them. 
A set of 1,040,000 patches was used for deep CNN 
learning, which were obtained from 44 X-ray angi-
ography images. The large sample allowed for high 
accuracy of CA and background region identifica-
tion – 93.5% and specificity of 97%. Fig. 3 shows 
the ANN work, compared with manually annotated 
images.

It is impossible to assess the coronary bed from 
images using one projection angle. A 3D model pro-
vides more information, so research in this area would 
be promising. Hence, J.M. Wolterink et al. (2019) 
[41] proposed a method for coronary artery centerline 
extraction in cardiac CT angiography using a CNN-
based orientation classifier (Fig. 4). Starting from a 
single seed point placed manually or automatically 
anywhere in the coronary artery, a tracker follows the 
vessel centerline in two directions using the predic-
tions of the CNN. Tracking is terminated when no di-
rection can be identified with high certainty. The CNN 
is trained using manually annotated centerlines in test 
images. 

Evaluation was performed using a test set con-
sisting of 24 coronary CT angiography (CCTA) test 
images in which 96 centerlines were extracted. The 
extracted centerlines had an average overlap of 93.7% 
with manually annotated reference centerlines. This 
study was a part of the Rotterdam Coronary Artery 
Evaluation Framework, which allows for the evalu-
ation of algorithms for coronary artery centerline ex-
traction.

Intravascular optical coherence tomography 
(OCT) is an optical imaging modality commonly 
used in the assessment of coronary artery diseases 
during percutaneous coronary intervention (PCI). 
Y.L. Yong et al (2017) [42] proposed a linear-regres-
sion CNN to automatically perform vascular lumen 
segmentation in OCT. The study used the total of 64 
pullbacks acquired from 28 patients (25% / 75% male 
/ female, the average age 59.71 (± 9.61) years) using 
Dragonfly™ Duo Imaging Catheter. These pullbacks 
were randomly split into a training and a test set in 
the ratio of 7:3. Benchmarking the results against the 
gold standard for manual segmentation, the proposed 
algorithm demonstrated the average CA wall location 
accuracy of 22 microns and the Dice coefficient and 
Jaccard similarity coefficient of 0.985 and 0.970, re-
spectively. The mean absolute error in luminal area 
estimation was 1.38%.

Fig. 3. Results of the ANN work: blue – manual annotation, red – automatic segmentation [40]

Onishchenko P.S., Klyshnikov K.Yu., Ovcharenko E.A. Artificial neural networks in cardiology: analysis of graphic data
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а

b

Fig. 4. Fully automatic centerline extraction: a – input images (upper row) and segmentation by the ANN (lower row); b – blue 
spheres indicate the starting points of the algorithm predicting the most likely direction and radius of the artery [41]

Assessment of the fractional flow reserve (FFR) 
[45] is a special form of CNN application in the field 
of medical image processing. After detecting regions 
of blocked CA during angiography, an interventional 
cardiologist, following the guidelines, makes a deci-
sion on FFR application based on the percentage of lu-
men diameter reduction. However, such intervention 
may be excessive in some cases, since stenosis could 
be hemodynamically insignificant, despite the occlu-
sion. Therefore, there is a tendency for defining FFR 
as a functional parameter of CA stenosis. The FFR is 
defined as a distal / proximal pressure ratio in the ste-
nosed segment [46].

These parameters are measured during invasive 
coronary angiography. To reduce the number of in-
vasive procedures, M. Zreik et al. (2018) [47] presen- 
ted a method for automatic identification of patients 
with functionally significant coronary artery stenoses, 
employing deep learning analysis of the LV myocar-
dium at rest using CCTA. The automatic analysis of 
the LV myocardium was used to assess the FFR in 
the study. The analysis incorporated manual annota-
tions of the LV myocardium (Fig. 3) and traditionally 
measured FFR parameters (n = 156) with the values 
of 0.79 ± 0.10. The neural network was tasked with 

classifying patients into those with functionally signif-
icant stenosis (FFR < 0.78) and those without it (FFR 
> 0.78). Quantitative evaluation of the segmentation 
performed on the 20 test scans resulted in a Dice coef-
ficient of  91.4 ± 2.1% [43, 44]. However, the sensiti- 
vity was 0.60–0.80 with the corresponding specificity 
of 0.77–0.59, depending on the CNN settings. These 
results cannot be properly transferred into clinical 
practice as a classification model, although the net-
work helps noninvasively estimate FFR. The subse-
quent work of this team following the same princi-
ple did not demonstrate a significant increase in the 
quality of classification despite changing the FFR 
cut-off values for functionally significant stenosis  
(FFR ≤ 0.8) and adjusting the input data (n = 136) [48].

L. Itu et al. [49] proposed an efficient method for 
determining FFR in 2016. Researches trained CNN di-
rectly on CT scans of the CAs, i.e. associated geomet-
ric features with hemodynamic significance. The input 
data were multislice computed tomography (MSCT) 
scans of 87 patients with 125 stenosed regions. The 
researchers manually annotated arteries, reconstruct-
ed 3D models of the coronary vascular bed, and per-
formed numerical modeling of the fluid dynamics, as-
sessing the pressure gradient. 
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The model was validated, and the diagnostic ac-
curacy for the detection of functionally significant 
CAD was shown to be 75–85%. Then, 12,000 coro-
nary geometries were generated to artificially increase 
the sample, so the model could assess the FFR. These 
data were used to train CNN. Thus, the researchers in-
creased the training set from 87 to 12,000 objects (by 
138 times). The results of the proposed neural network 
were 99.7% consistent with the results of the numeri-
cal analysis (R = 0.9998, p < 0.001). The trained CNN 
was tested using input clinical MSCT data (n = 87) 
with the resulting sensitivity of 81.6% and specificity 
of 83.9%. This result is largely due to the imperfec-
tion of the computational fluid dynamics algorithms. 
Nevertheless, this study seems to be the most prom-
ising, since FFR estimation is based primarily on the 
CA anatomy. Perhaps, by combining two studies de-
scribed above, a synergistic effect could be achieved 
by incorporating both LV and CA geometry analysis 
to improve FFR estimation. It should be noted that the 
method proposed in [41], allowing for the reconstruc-
tion of 3D representation of CA, can be combined with 
the method in [49], which can lead to a breakthrough 
in the field of noninvasive FFR estimation.

Detection of surgical devices

For TAVR procedures, the task of detecting cath-
eters remains urgent, as it could assist in determining 
the optimal implant positioning.

The authors (2017) in [50] attempted to detect 
guidewires using datasets comprised of X-ray images. 
Overall, 22 image sequences were used in the study. 
The testing task of the region proposal network was 
divided into three steps. At the first step, 256 region 
proposals of guide-wires were generated from a test 
image as input data. At the second step, all the propos-
als were classified by the region, the region propos-
al was considered as the target, if its corresponding 
score was larger than the threshold value. Finally, the 
detected proposals with the highest score were selec- 
ted. Following this algorithm, a total of 5, 092 imag-
es were obtained from the 22 original X-ray images. 
Then, researches divided 22 sequences into two sets, 
one – for training (19 sequences) and the rest – for 
testing (3 sequences). The detection accuracy reached 
89.2%. The detection results are shown in Fig. 5, a.

In 2019, H. Yang et al. [51] developed a method 
for catheter segmentation in 3D ultrasound images 
(Fig. 5, b) intending to use it during minimally inva-
sive interventions. Since it was a pilot study, four data 
sets from four porcine hearts were used as the study 

samples. The whole algorithm was divided into three 
steps: 1) extracting the discriminating features from 
each voxel; 2) classifying voxels into catheter-like and 
non-catheter voxels using the CNN; 3) employing cu-
bic spline interpolation to identify the catheter in the 
images. The proposed method can localize the cathe-
ter with the mean error of 2.1 mm while scanning the 
images for 10 seconds. With the increase in the com-
puting power and optimization of the algorithm, this 
method would be able to instantly process datasets.

In the same year, a team of researchers led by  
H. Lee [52] used CNN to track and detect a periph-
erally inserted central catheter (PICC) and its tip. A 
total of 600 DICOM images from 600 different pa-
tients containing the keyword “PICC” were used in 
the study. The authors randomly selected 50 cas-
es from the entire cohort to be used as a validation 
dataset and 150 cases to be used as a test dataset. The 
remaining cases were utilized to train fully convolu-
tional networks (FCN) [53]. The neural networks de-
veloped by this team obtained absolute distances from 
ground truth with the mean of 3.10 mm, a standard 
deviation of 2.03 mm, and a root mean square error 
of 3.71 mm per 150 test cases. Despite the fact that all 
the images have a different angle and image noise, the 
CNN is able to accurately segment PICC line, ECG 
sensors, various objects (any additional  structures), 
and threads (Fig. 5, c).

PROMISING DIRECTIONS FOR CNN 
ANN have proved useful in the field of graphic 

data analysis: from medical image segmentation to as-
sessing and predicting the development of pathologies 
in experimental and pilot studies. With the increasing 
availability of high-performance systems, ANN could 
find application in the form of commercial products, 
but this would require solving a number of problems 
related to clinical data and interaction between ANN 
and infrastructures.

Besides training, ANN requires a sufficient number 
of heterogenic data. The existing databases of annota- 
ted MSCT, CT, and MR images used for CNN  
training are limited. They usually include 100–300  
images [19], while training often requires 1,000–
10,000 samples. Various methods of artificial data 
generation and augmentation used in the studies have 
their own limitations and, due to their nature, con-
tribute to the accuracy of CNN performance. Hence, 
collecting, standardizing, and annotating medical data 
can result in a promising project, especially concern-
ing the development of multicenter databases.
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Another feature is heterogeneity of the neural net-
work architectures. Research teams have been using 
their own models of ANN, never combining them 
with other CNNs for a cumulative effect. The different 
networks mentioned in this review could have been 
fused into a comprehensive system of neural network 
analysis to increase accuracy of the results. Howe- 
ver, in practice this rarely happens. Perhaps, it is due 
to incompatibility of input data or neural network 
architecture. The prospect of combining multidirec-
tional approaches for medical image segmentation or 
disease prediction, i.e., development of an integrated 
approach to neural network performance, can signifi-
cantly increase the sensitivity and specificity of the 
results.

Finally, despite the development of computing 
hardware and image processing, many performance 
problems persist. The main calculations, such as se-
lection of weight coefficients at the CNN training 
stage, happen on the graphic core of high-perfor-
mance video cards (GPU). Compared with training 
on the central processing unit, GPU accomplishes the 
task much faster. However, a real-time image analysis 
(detection, segmentation) is usually carried out on less 
sophisticated machinery. The development of cloud 
computing in combination with CNN optimization 
algorithms should significantly simplify practical im-
plementation of such systems by reducing the require-
ments to the PC computing power.

CONCLUSION
Over the past few years, ANN has been incorpo-

rated in many areas of our lives – from entertainment 
(applications for photo processing in smartphones, 
etc.) to engineering design systems (for example, gen-
erative technologies). The wide spread of machine 
learning methods in everyday life occurred due to 
the growth of computing power, both in stationary 
and in wearable devices. Medical field is no excep-
tion – ANN have proven effective in a wide range of 
tasks, including graphic data processing. Despite the 
advances in this field, the development of ANN has 
been slow for a number of reasons, several of which 
are described above. In this brief review, the possi-
ble applications of CNN in the field of cardiology and 
cardiac surgery have been shown. Although there is 
room for improvements, the network could become a 
reliable assistant for practitioners and researchers in 
the future.

Data availability presents the main problem to 
the implementation of CNN in healthcare. Thus, the 
question remains open, whether it would be possible 
to collect enough annotated data to train the ANN. Re-
cent studies have shown that the more data there is, 
the better the results will be. However, it is not known 
how the big data can be used.

The above-mentioned studies have demonstrat-
ed that deep learning methods assist in the research 
process, but due to the uniqueness of the used data,  
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marked with a square [50]; b – successful segmentation (left) and its original image (right) [51]; c – when segmenting PICC (red), 
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researchers must search for other complex methods 
that would allow efficient analysis of clinical data. It 
can be concluded that the prospects of ANN applica-
tion in healthcare have no limitations.

REFERENCES
1. Shen D., Wu G., Suk H.-I. Deep Learning in Medical Image 

Analysis. Annu Rev Biomed Eng. 2017; 19: 221–248. DOI: 
10.1146/annurev-bioeng-071516-044442.

2. Smith B.J., Adhami R.R. Medical imaging. IEEE Potentials. 
2000; 17 (5): 9–12. DOI: 10.1109/45.730965.

3. Bai W., Sinclair M., Tarroni G., Oktay O., Rajchl M., Vaillant 
G. et al. Automated cardiovascular magnetic resonance image 
analysis with fully convolutional networks 08 Information and 
Computing Sciences 0801 Artificial Intelligence and Image 
Processing. J Cardiovasc. Magn. Reson. 2018; 20 (1): 65. DOI: 
10.1186/s12968-018-0471-x.

4. Caterini A.L., Chang D.E. Recurrent neural networks. Springer 
Briefs Comput. Sci. 2018; 59–79.

5. Nie D., Wang L., Gao Y., Sken D. Fully convolutional networks 
for multi-modality isointense infant brain image segmentation. 
Proc - Int Symp Biomed Imaging. 2016; 2016: 1342–5. DOI: 
10.1109/ISBI.2016.7493515.

6. Thaha M.M., Kumar K.P.M., Murugan B.S., Dhanasekeran S., 
Vijayakarthick P., Selvi A.S. Brain tumor segmentation using 
convolutional neural networks in MRI images. J. Med. Syst. 
2019; 43 (9): 1240–1251. DOI: 10.1007/s10916-019-1416-0.

7. Suk H.I., Lee S.W., Shen D. Latent feature representation with 
stacked auto-encoder for AD/MCI diagnosis. Brain Struct. 
Funct. 2015; 220 (2): 841–859. DOI: 10.1007/s00429-013-
0687-3.

8. Suk H.-I., Shen D. Deep learning in diagnosis of brain disor-
ders. Recent. Prog. Brain Cogn. Eng. Springer. 2015; 203–213. 
DOI: 10.1007/978-94-017-7239-6_14.

9. Ronneberger O., Fischer P., Brox T. U-net: Convolutional net-
works for biomedical image segmentation. Lect. Notes Com-
put. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 
Bioinformatics). 2015; 9351: 234–241.

10. Milletari F., Navab N., Ahmadi S.A. V-Net: Fully convo-
lutional neural networks for volumetric medical image seg-
mentation. Proc. - 2016 4th Int. Conf. 3D Vision, 3DV 2016. 
IEEE. 2016; 565–571.

11. Szegedy C., Toshev A., Erhan D. Deep Neural Networks for 
object detection. Adv. Neural Inf. Process. Syst. 2013; 2553–
2561.

12. Taigman Y., Yang M., Ranzato M., Wolf L. DeepFace: Clos-
ing the gap to human-level performance in face verification. 
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-
nit. 2018; 1701–1708. DOI: 10.1109/CVPR.2014.220.

13. Silver D., Huang A., Maddison C.J., Guez A., Sifre L., van 
den Driessche G. et al. Mastering the game of Go with deep 
neural networks and tree search. Nature. 2016; 529 (7587): 
484–489. DOI: 10.1038/nature16961.

14. Razzak M.I., Naz S., Zaib A. Deep learning for medical image 
processing: Overview, challenges and the future. Lect. Notes 
Comput. Vis. Biomech. 2018; 26: 323–350.

15. Smistad E., Falch T.L., Bozorgi M., Elster A.C., Lindseth F. 
Medical image segmentation on GPUs - A comprehensive re-

view. Med. Image Anal. 2015; 20 (1): 1–18. DOI: 10.1016/j.
media.2014.10.012.

16. Zhou T., Ruan S., Canu S. A review: Deep learning for med-
ical image segmentation using multi-modality fusion. Array. 
2019;3–4:100004. DOI: 10.1016/j.array.2019.100004.

17. Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., 
Huang Z., Karpathy A., Khosla A., Bernstein M., Berg A.C., 
Fei-Fei L. ImageNet large scale visual recognition challenge. 
Int. J. Comput. Vis. 2015; 115 (3): 211–252. DOI: 10.1007/
s11263-015-0816-y.

18. Moeskops P., Wolterink J.M., van der Velden B.H., Gilhuijs 
K.G., Leiner T., Viergever M.A., Išgum I. Deep learning for 
multi-task medical image segmentation in multiple modali-
ties. Lect. Notes Comput. Sci. (including Subser. Lect. Notes 
Artif. Intell. Lect. Notes Bioinformatics). 2016; 9901 LNCS: 
478–486. DOI: 10.1007/978-3-319-46723-8_55.

19. Baumgartner C.F., Koch L.M., Pollefeys M., Konukoglu E. 
An exploration of 2D and 3D deep learning techniques for 
cardiac MR image segmentation. Lect. Notes Comput. Sci. 
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioin-
formatics. 2018; 10663 LNCS: 111–119. DOI: 10.1007/978-
3-319-75541-0_12.

20. Pesapane F., Codari M., Sardanelli F. Artificial intelligence 
in medical imaging: threat or opportunity? Radiologists again 
at the forefront of innovation in medicine. Eur. Radiol. Exp. 
2018; 2 (1): 35. DOI: 10.1186/s41747-018-0061-6.

21. Bryukhomitskiy Yu.A. Neural network models for informa-
tion security systems. Taganrog: TRTU, 2005: 160 (in Russ.). 

22. Kim M., Yun J., Cho Y., Shin K., Jang R., Bae H., Kim N. 
Deep learning in medical imaging. Neurospine. 2019;16 (4): 
657–668. DOI: 10.14245/ns.1938396.198.

23. Krittanawong C., Tunhasiriwet A., Zhang H.J., Wang Z., 
Aydar M., Kitai T. Deep learning with unsupervised feature 
in echocardiographic imaging. J. Am. Coll. Cardiol. 2017; 69 
(16): 2100–2101. DOI: 10.1016/j.jacc.2016.12.047.

24. Zhao Y., Xia X., Togneri R. Applications of deep learning 
to audio generation. IEEE Circuits Syst. Mag. 2019; 19 (4): 
19–38. DOI: 10.1109/MCAS.2019.2945210.

25. LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015; 
521 (7553): 436–444. DOI: 10.1038/nature14539.

26. Gupta A., Ayhan M.S., Maida A.S. Natural image bases to 
represent neuroimaging data. 30th Int. Conf. Mach. Learn. 
ICML 2013. 2013; 2024–2031.

27. Brosch T., Tam R. Initiative for the Alzheimers Disease Neu-
roimaging. Manifold Learn brain MRIs by Deep Learning 
Med. Image Comput. Assist. Interv. 2013; 16 (2): 633–640. 
DOI: 10.1007/978-3-642-40763-5_78.

28. Yu L., Guo Y., Wang Y., Yu J., Chen P. Segmentation of 
fetal left ventricle in echocardiographic sequences based 
on dynamic convolutional neural networks. IEEE Trans. 
Biomed. Eng. 2017; 64 (8): 1886–1895. DOI: 10.1109/
TBME.2016.2628401.

29. Xue W., Brahm G., Pandey S., Leung S., Li S. Full left ven-
tricle quantification via deep multitask relationships learn-
ing. Med. Image Anal. 2018; 43: 54–65. DOI: 10.1016/j.me-
dia.2017.09.005.

30. Xue W., Lum A., Mercado A., Landis M., Warrington J.,  
Li S. Full quantification of left ventricle via deep multitask 

Onishchenko P.S., Klyshnikov K.Yu., Ovcharenko E.A. Artificial neural networks in cardiology: analysis of graphic data



203

Reviews and lectures

Бюллетень сибирской медицины. 2021; 20 (4): 193–204

learning network respecting intra- and inter-task relatedness. 
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. 
Intell. Lect. Notes Bioinformatics). 2017; 10435 LNCS: 276–
284. DOI: 10.1007/978-3-319-66179-7_32.

31. Dormer J.D., Fei B., Halicek M., Ma L., Reilly C.M., Schreib-
mann E. Heart chamber segmentation from CT using convolu-
tional neural networks. Med. Imaging 2018 Biomed. Appl. Mol. 
Struct. Funct. Imaging, vol. 10578. International Society for 
Optics and Photonics. 2018; 100. DOI: 10.1117/12.2293554.

32. Tan L.K., McLaughlin R.A., Lim E., Abdul Aziz Y.F.,  
Liew Y.M. Fully automated segmentation of the left ventri-
cle in cine cardiac MRI using neural network regression. J. 
Magn. Reson. Imaging. 2018; 48 (1): 140–152. DOI: 10.1002/
jmri.25932.

33. Wang D., Zhang R., Zhu J., Teng Z., Huang Y., Spiga F.,  
Du M.H.-F., Gillard J.H., Lu Q., Liò P. Neural network fusion: 
a novel CT-MR aortic aneurysm image segmentation method. 
Med. Imaging 2018 Image Process. 2018; 10574: 75. DOI: 
10.1117/12.2293371.

34. Graffy P.M., Liu J., Pickhardt P.J., Burns J.E., Yao J., Sum-
mers R.M. Deep learning-based muscle segmentation and 
quantifcation at abdominal CT: Application to a longitudinal 
adult screening cohort for sarcopenia assessment. Br. J. Radi-
ol. 2019; 92 (1100): 2921–2928. DOI: 10.1259/bjr.20190327.

35. He K., Gkioxari G., Dollár P., Girshick R. Mask r-cnn. 
Proc. IEEE Int. Conf. Comput. Vis. 2017; 2961–2969. DOI: 
10.1109/ICCV.2017.322.

36. Pickhardt P.J. Imaging and screening for colorectal cancer 
with CT colonography. Radiol. Clin. North Am. 2017; 55 (6): 
1183–1196. DOI: 10.1016/j.rcl.2017.06.009.

37. Neves P.O., Andrade J., Monção H. Escore de cálcio coronar-
iano: Estado atual. Radiol Bras. 2017; 50 (3): 182–189. DOI: 
10.1590/0100-3984.2015.0235.

38. Segal B.L. The pathology of coronary heart disease. Can. 
Med. Assoc. J. 1962; 87 (26): 1387–1390.

39. Van der Wal A.C. Coronary artery pathology. Heart. 2007; 93 
(11): 1484–1489. DOI: 10.1136/hrt.2004.038364.

40. Nasr-Esfahani E., Samavi S., Karimi N., Soroushmehr S.R., 
Ward K., Jafari M.H., Felfeliyan B., Nallamothu B., Najarian 
K. Vessel extraction in X-ray angiograms using deep learning. 
Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016; 2016: 
643–646.  DOI: 10.1109/EMBC.2016.7590784.

41. Wolterink J.M., Hamersvelt R.W., Viergever M.A., Leiner T.,  
Išgum I. Coronary artery centerline extraction in cardiac 
CT angiography using a CNN-based orientation classifi-
er. Med. Image Anal. 2019; 51: 46–60. DOI: 10.1016/j.me-
dia.2018.10.005.

42. Yong Y.L., Tan L.K., McLaughlin R.A., Chee K.H.,  
Liew Y.M. Linear-regression convolutional neural network 
for fully automated coronary lumen segmentation in intravas-
cular optical coherence tomography. J. Biomed. Opt. 2017; 22 
(12): 1–9. DOI: 10.1117/1.jbo.22.12.126005.

43. Dice L.R. Measures of the amount of ecologic association 

between species. Ecology. 1945; 26 (3): 297–302. DOI: 
10.2307/1932409.

44. Zou K.H., Warfield S.K., Bharatha A., Tempany C.M.C., 
Kaus M.R., Haker S.J., Wells W.M., Jolesz F.A., Kikinis R. 
Statistical validation of image segmentation quality based on 
a spatial overlap index. Acad. Radiol. 2004; 11 (2): 178–189. 
DOI: 10.1016/S1076-6332(03)00671-8.

45. Pijls N.H., De Bruyne B., Peels K., van der Voort P.H., Bonni-
er H.J.R.M., Bartunek J., Koolen J.J. Measurement of fraction-
al flow reserve to assess the functional severity of coronary-ar-
tery stenoses. N. Engl. J. Med. 1996; 334 (26): 1703–1708. 
DOI: 10.1056/NEJM199606273342604.

46. Stegehuis V.E., Wijntjens G.W., Piek J.J., van de Hoef T.P. 
Fractional flow reserve or coronary flow reserve for the as-
sessment of myocardial perfusion: Implications of FFR as an 
imperfect reference standard for myocardial ischemia. Curr. 
Cardiol. Rep. 2018; 20 (9): 77. DOI: 10.1007/s11886-018-
1017-4.

47. Zreik M., Lessmann N., van Hamersvel R.W., Wolterink J.M., 
Voskuil M., Viergever M. A., Leinerb T., Išgum I. Deep learn-
ing analysis of the myocardium in coronary CT angiography 
for identification of patients with functionally significant coro-
nary artery stenosis. Med. Image Anal. 2018; 44: 72–85. DOI: 
10.1016/j.media.2017.11.008.

48. Van Hamersvelt R.W., Zreik M., Voskuil M., Viergever M.A., 
Išgum I., Leiner T. Deep learning analysis of left ventricular 
myocardium in CT angiographic intermediate-degree coro-
nary stenosis improves the diagnostic accuracy for identifica-
tion of functionally significant stenosis. Eur. Radiol. 2019; 29 
(5): 2350–2359. DOI: 10.1007/s00330-018-5822-3.

49. Itu L., Rapaka S., Passerini T., Georgescu B., Schwemmer C., 
Schoebinger M., Flohr T., Sharma P., Comaniciu D. A ma-
chine-learning approach for computation of fractional flow re-
serve from coronary computed tomography. J. Appl. Physiol. 
2016; 121 (1): 42–52. DOI: 10.1152/japplphysiol.00752.2015.

50. Wang L., Xie X.L., Bian G.B., Hou Z.G., Cheng X.R., Pra-
song P. Guide-wire detection using region proposal net-
work for X-ray image-guided navigation. Proc. Int. Jt. Conf. 
Neural Networks. 2017; 2017: 3169–3175. DOI: 10.1109/
IJCNN.2017.7966251.

51. Yang H., Shan C., Kolen A.F., de With P.H.N. Catheter local-
ization in 3D ultrasound using voxel-of-interest-based Con-
vNets for cardiac intervention. Int. J. Comput. Assist. Radiol. 
Surg. 2019; 14 (6): 1069–1077. DOI: 10.1007/s11548-019-
01960-y.

52. Lee H., Mansouri M., Tajmir S., Lev M.H., Do S. A deep-learn-
ing system for fully-automated peripherally inserted central 
catheter (PICC) tip detection. J. Digit. Imaging. 2018; 31 (4): 
393–402. DOI: 10.1007/s10278-017-0025-z.

53. Shelhamer E., Long J., Darrell T. Fully сonvolutional net-
works for semantic segmentation. IEEE Trans. Pattern Anal. 
Mach. Intell. 2017; 39 (4): 640–651. DOI: 10.1109/TPA-
MI.2016.2572683. 



204 Bulletin of Siberian Medicine. 2021; 20 (4): 193–204

Authors information
Onishchenko Pavel S., Junior Researcher, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo; Post-

Graduate Student, Laboratory of New Biomaterials, Science Institute of Computational Technologies of the Siberian Branch of the Russian 
Academy of Sciences, Novosibirsk, Russian Federation. ORCID 0000-0003-2404-2873. 

Klyshnikov Kirill Yu., Researcher, Laboratory of New Biomaterials, Science Institute of Computational Technologies of the Siberian 
Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation. ORCID 0000-0003-3211-1250.

Ovcharenko Evgeny A., Cand. Sci. (Technical Sciences). Head of the Laboratory of New Biomaterials, Science Institute of 
Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation. ORCID 0000-
0001-7477-3979. 

(*)  Onishchenko Pavel S., е-mail: onis.pavel@gmail.com

Received 14.07.2020
Accepted 28.12.2020

Onishchenko P.S., Klyshnikov K.Yu., Ovcharenko E.A. Artificial neural networks in cardiology: analysis of graphic data


