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ABSTRACT

Aim. To consider application of convolutional neural networks for processing medical images in various fields of
cardiology and cardiac surgery using publications from 2016 to 2019 as an example.

Materials and methods. In the study, we used the following scientific databases: PubMed Central, ArXiv,
ResearchGate. The cited publications were grouped by the area of interest (heart, aorta, carotid arteries).

Results. The general principle of work of the technology under consideration was described, the results were
shown, and the main areas of application of this technology in the studies under consideration were described.
For most of the studies, sample sizes were given. The author’s view on the development of convolutional neural
networks in medicine was presented and some limiting factors for their distribution were listed.

Conclusion. A brief overview shows possible areas of application of convolutional neural networks in the fields of
cardiology and cardiac surgery. Without denying the existing problems, this type of artificial neural networks may
help many doctors and researchers in the future.
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PE3IOME

PaccMmoTpeHs! 00:1acTH MPUMEHEHUsI CBEPTOYHBIX HEHPOHHBIX ceTell U1 00pabOTKI MEIUIIMTHCKIX N300pasKeHUH
B Pa3NMYHBIX cepax KapAUOJIOTHH H KapJHOXUPYPrud Ha mpuMepe myonukanuii ¢ 2016 mo 2019 1.

B manHOi1 paboTe ucnonp3oBaInch caeayomuye 6a3pl HayyHbix crateil: PubMed Central, ArXiv, ResearchGate.
[IpuBenenHbIe PabOTH CTPYKTYPHUPOBAIUCH IO 00JIACTH HHTEpeca (Cepale, aopTa, COHHBIE apTepUH).

Onucan 061].[1/[ﬁ TMpUHOUIT pa6OTI>I paCCManHBaeMOﬁ TCXHOJIOTWHU, IMOKa3aHbl PE3YJIbTaTbl U PACCMOTPECHBI
OCHOBHBIE 00J1aCTH NPUMCHEHUA I[aHHOﬁ TEXHOJIOTUH B aHAJIU3UPYEMBIX paGOTax. )1.]'[51 OOJIBIIMHCTBA TMPUBEACHHBIX
HCCJ’IG}IOB&HHﬁ MPUBEACHBI 00BbEMBI BLI60pOK, aBTOPCKOE€ BUACHHUE PA3BUTHA CBEPTOUYHBIX HeﬁpOHHHX cerel B
MEIUIMHE U NEPEUNCITICHBI HEKOTOPLIE OTrpaHUYHBAONINE (baKTOpI:I I UX pacripoCTpaHCHUS.

IMoka3zaHbl BO3MOKHBIE c(hepbl IPUMEHEHHS CBEPTOYHBIX HEHPOHHBIX ceTell B 00JIaCTH KapAHOJIOTHH M KapJIHo-
xupyprun. He oTpunast cymecTByromue npoOieMsl, TaKOH THII HCKYCCTBEHHBIX HEHPOHHBIX ceTed B Oyymem
MOJKET CTaTh BEPHBIM IIOMOILIHUKOM JJIsl IIMPOKOro CIEKTpa Bpadel U UCCIe0BaTEeICH.

KiroueBble ciioBa: ceeprounbsle HeliponHsle cetd, CNN, FFR, xapauosorus, narosorus cepiedHo-COCYAUCTON
CUCTEMBI, CTCHO3, JCTEKIIMSL.

KonpaukT nunTepecoB. ABTOPHI JEKIAPUPYIOT OTCYTCTBUE SIBHBIX U MOTEHIMAIBHBIX KOH(INKTOB HHTEPECOB,
CBSI3aHHBIX C MyOJIMKAIMEH TaHHOW CTAaThH.

Hcrounnk ¢unancupoBanmusi. PaGora BbIONHEHAa MNpPU  NOJJEPKKE KOMIUICKCHOW — HPOrpaMMBI
¢bynnameHTanbpHbIX Hay4yHbIX HccnenoBanuii CO PAH B pamkax dynaamenrtanboii tembl HUU KITICC3 Ne 0419-
2021-001 «Pa3paboTka HOBBIX (hapMaKOJOTHUYCCKHUX MMOIXOM0B K IKCIICPUMEHTAILHON TEPAITUH aTePOCKIepo3a
¥ KOMIUIEKCHBIX LU(POBBIX PELICHUII HAa OCHOBE HMCKYCCTBEHHOTO HHTEIJICKTa /Il aBTOMAaTU3MPOBAHHOU
JTMarHOCTHKH TaTOJIOTUI CUCTEMBI KPOBOOOPAIIIEHHS ¥ ONIPE/ICIICHHs PHCKa JICTAILHOTO UCX0/1a» IPH (PMHAHCOBOIA
nojsepxke MUHUCTEpCTBa HayKU U BbIcuiero oopasosanus Poccuiickoit denepanuu B paMKkax HallMOHAIBHOTO
npoekrta «Hayka u yHUBepCUTETBI».

Jas nuruposanusi: Onumenko I1.C., Knpiraukos K 1O., OBuapenko E.A. MckyccTBeHHBIE HEHPOHHBIE CETH B
KapIUOJIOTUH: aHaJIU3 TpadUUeCcKuX JaHHBIX. broatemens cubupckou meouyunsl. 2021; 20 (4): 193-204. https:/
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INTRODUCTION

When examining a patient with cardiovascular
diseases, a physician receives textual and numerical
information (for example, medical history and blood
test results), as well as graphic data (the results of com-
puted tomography (CT), magnetic resonance imaging
(MRI), echocardiography, scintigraphy, and X-ray),
which require long-term analysis and assessment [1,
2]. It takes a highly qualified expert up to 20 minutes
to analyze MRI scans of a patient at two time points
of the cardiac cycle — the end-diastole and end-sys-
tole [3]. It is a tedious and time-consuming process,
that could lead to a diagnostic error [4]. However, in
addition to the qualitative description, there is another
important aspect of the quantitative assessment of im-
ages — linear and volumetric measurements for diag-
nosis, prognosis, treatment monitoring, and research
purposes.

With the development of deep learning methods,
such as neural networks, which have been used for

image segmentation [5], object detection [6], and clin-
ical decision support systems [7, 8], and with their in-
creased availability [9, 10], it became possible to apply
these methods in medical imaging [11-13]. In general,
neural networks differ significantly from algorithmic
approaches, which has been the main reason for their
widespread use and implementation in the field of
medicine. They have the ability to independently es-
tablish a relationship between input and output values
via unsupervised training, which results in successful
extraction of implicit or multifactorial relationships
from data and better image interpretation [14].
Moreover, growth in computing performance, pri-
marily due to graphics processing unit (GPU) com-
puting [15], and availability of open-source neural
networks make them accessible to many researchers
[16]. Taking into account these factors, as well as
the existence of large databases (for example, Ima-
geNet [17], Cardiac CTA [18], ACDC [19]), the task
of developing tools for reducing the contribution of
the “human” factor to the analysis of medical images
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remains relevant. In the period from 2008 to 2018,
the number of publications dedicated to the machine
learning approaches in medical image analysis in-
creased by 8 times [20]. This paper presents several
previous publications on the use of neural networks
for medical image processing in various fields of car-
diology and cardiac surgery in the period from 2016
to 2019.

THE CONCEPT OF A CONVOLUTIONAL
NEURAL NETWORK

The history of neural networks began with the
primitive feed-forward artificial neural networks
(ANN) (usually known as the perceptron [21]),
which were the first and simplest types of ANN. Fur-
ther development of architectures led to the forma-
tion of deep learning ANN, which are characterized
by complex topology and larger number of intercon-
nected neurons, compared with perceptrons. These
ANN imitate human cognition, making an associa-
tion based on previous experience with the help of
training, during which the probability of accurate
object classification increases [22-24]. To date,
convolution neural network (CNN) is considered to
be the most effective ANN for image recognition.
The main feature of this architecture is a convolu-
tional layer. This layer (or set of layers) processes the
input image (ANN extracts desired features) and then
passes it to subsequent processing, similar to other
ANN [25].

Given that CNNs are a type of ANN, they exhibit
two main features — a need for training and the abili-
ty to switch [1]. To train the ANN, it is necessary to
present it with a large number of labelled training data,
where experts pre-select the features — similar to train-
ing of humans [24]. Therefore, the most important
factor affecting the CNN is the quality of input data,
primarily accurate segmentation. Another important
aspect at the stage of developing CNN architecture is
the structure and volume of data: a small sample or in-
sufficient heterogeneity will lead to a large percentage
of errors as a result, i.e. to a decrease in the quality of
object recognition [1].

The ability of CNN to switch implies the
ability to work with similar data. It is possible
to conduct pre-training on data from open sources,
and then fine-tune it for the target task [26, 27]. Both
features make CNN a promising and accessible tool
for medical image analysis, and a number of multi-
disciplinary teams have been conducting research in
this field.

MEDICAL IMAGE PROCESSING USING CNN

Heart

Segmentation and quantitative assessment of car-
diac and myocardial parameters are important in car-
diology for assessing the severity of the initial state
of the disease (dilatation, hypertrophy, contractile
disorders, anatomical changes, etc.) and monitoring
the results of treatment (remodeling, changes in the
size of chambers). Despite the achieved progress in
this area, this task is still challenging due to wide
subject-to-subject anatomical variation. The main re-
search directions in this area are image segmentation
and classification.

For example, L. Yu et al. (2016) used CNN for fe-
tal left ventricular (LV) segmentation in echocardio-
graphic sequences [28]. Fetal echocardiography is the
primary modality for evaluating prenatal cardiac func-
tion due to its low cost, harmless nature, and quick
acquisition. A quantitative analysis of fetal echocar-
diographic images provides important fetal cardiac
function parameters for early diagnosis of heart dis-
eases.

The author proposes a dynamic CNN, the training
of which includes 2 steps: pre-training and fine-tu-
ning. Pre-training was carried out using images, where
the neural network divided each pixel into two catego-
ries: a pixel in the region of interest and out of it. The
training set consisted of 200,000 samples that were
chosen randomly in 10 manually delineated sequenc-
es. The validation set consisted of 8,000 samples. It
is worth noting that only the first frame of each echo-
cardiographic sequence was segmented manually,
which simplified the work of the experts. Thus, the
dynamic CNN was fine-tuned by deep tuning to adapt
to the first frame and by shallow tuning to fix the latest
frame, adapting to the individual features. As a result,
the segmentation accuracy was 94.5%. Further work
is aimed at carrying out a quantitative analysis of fetal
LV functions based on the results obtained using the
proposed segmentation method. An example of the re-
sults obtained is shown in Fig. la.

W. Xue et al. (2018) [29] proposed an architec-
ture for a deep multitask relationship learning net-
work (DMTRL) which incorporates CNN for cardiac
image representation and two parallel recurrent neural
networks (RNN) for temporal dynamic modeling of
cardiac sequences. The proposed network quantifies
three types of LV parameters (the cavity inside the
myocardium, regional wall thicknesses, and a cardi-
ac cycle phase). The authors collected MRI images of
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145 individuals (average age was 58.9 years), with 20
frames for each cardiac cycle. Compared with the pre-
vious study [30], this ANN demonstrated higher prog-
nosis accuracy with an absolute error of 1.7-10.3%
for the studied LV parameters.

J.D. Dormer et al. [31] presented a CNN-based
heart chamber segmentation method for 3D CT with
5 classes: left ventricle, right ventricle, left atrium,
right atrium, and background. Chest CT images were
acquired for 11 patients with the total number of slic-
es ranging from 78 to 154 for each patient, providing
a large amount of data. The images were processed
into pixel patches of five classes, 2 500 patches from
each class for each patient were chosen for CNN
training and validation. The results were validated by
calculating the overall accuracy of the classification
for each segmented region, with the accuracy defined
as the number of correctly labeled patches from the
total number of patches for the testing dataset. As a
result, the accuracy in segmentation of the heart and
the overall accuracy were 85.6 = 6.1% and 87.2 +

3.3%, respectively. It is worth noting that 11 unique
cases resulted in such high accuracy of the network,
despite insufficient heterogeneity of data. Neverthe-
less, this approach seems appropriate only for rare
diseases, especially using augmentation of the data-
set size due to rotation and scaling without substan-
tial changes [25].

L. Tan et al. (2018) [32] developed a fully auto-
mated algorithm for LV segmentation in cardiac MRI.
The study utilized the data of 200 subjects with cor-
onary artery disease and regional wall motion abnor-
malities and 1,140 subjects with a combination of nor-
mal and abnormal cardiac functions. The combined
training data and the manually labeled data were split
85:15 by the subject for training and cross-validation,
respectively (i.e. 26, 069 and 9, 860 unique images).
The developed algorithm demonstrated the median
Jaccard similarity coefficient of 0.77 + 0.11. The re-
sult of the input data processing is shown in Fig. 1.
Contrary to [31], this work has a large sample of input
images for both training and validation.

Fig. 1. The segmentation results: a — of successive echocardiographic images shown in [28]; b — of endo- and epicardium slicing
from the apex to the base obtained using CNN [32]

Aorta

Aorta segmentation can be used for reconstructing
its geometry, such as 3D models for further numeri-
cal analysis and preoperative planning, as well as for
detecting pathological changes. Neural networks in
this area can be used for assessment and selection of
appropriate prostheses for transcatheter aortic valve
replacement (TAVR) procedures.

Attempting to solve the problem of aortic segmen-
tation, D. Wang et al. (2018) [33] developed a novel

method for CT-MR aortic aneurysm image segmenta-
tion. The standard approach to training the CNN incor-
porates CT and MR images separately. However, this
approach is time-consuming and inefficient due com-
putational cost of training the ANN. The novelty of the
proposed CNN is fusion of the parts of the model that
work with CT and MR images. Such network can un-
dergo end-to-end (complete) training using unlabeled
CT and MR images in a shorter time period, since trai-
ning occurs on two types of input data simultaneously.
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Moreover, the fusion model allows for shared repre-
sentation of CT and MR images showing similar parts
of the aorta for all image modalities (Fig. 2a). Proces-
sing images, the CNN segments them into five differ-
ent classes, namely, aortic wall, its lumen, thrombus,
calcium deposits, and irrelevant parts as background.
The validation accuracy of the fusion models is 98.5%,
which is 1.2% more than that of other models.

Another study in this area was conducted by
P.M. Grafty et al. (2019) [34] (Fig. 2b), who used
the fully automated Mask R-CNN algorithm [35] for
segmentation of aortic calcification. The segmen-
tation algorithm was applied to 9,914 non-contrast
CT scans of 9,032 asymptomatic adults, who were
screened for conditions not related to cardiovascular
diseases [36].

Fig. 2. A: The result of CT (left pair) and MR image (right pair) segmentation into 5 classes [33]: red — lumen of the aortic channel;

green — aortic wall; purple — thrombus; blue — calcium; black — background (a). Segmentation of aortic calcification using Mask

R-CNN automated algorithm: input image (left); the result of the segmentation (right) presented in [34]; L1 and L4 lines mark the
area of algorithm application (b)

The images were used to estimate the abdominal
volume and the number of calcifications and assess
the Agatston score (showing the extent of coronary
artery calcification) [37]. Statistical processing of
the results showed that the mean values for the Agat-
ston score were higher in men (924.2 + 2,066.2 vs.
564.2 £ 1,484.2, p < 0.001), the calcium mass was
222.2 £ 526.0 mg vs. 144.5 + 405.4 mg (p < 0.001),
and the abdominal volume — 699.4 + 1,552.4 ml vs.
426.9 £ 1,115.5 ml (p < 0.001). The mean score in-
creased with age by 10% per year for the entire cohort.
Compared with women, men (age 40-60 years) had
higher calcium scores (91.2% vs. 75.1%, p < 0.001)
and significantly higher mean Agatston score (age 50—
80, p < 0.001). Thus, in combination with statistical
methods, CNN allows researchers to quickly obtain
large amounts of quantitative data and measurements
and process them with standard methods of medical

statistics, making this combination a necessary tool
for scientific research. The authors noted, that this
study is only the first step towards creating a clinical
tool for detecting calcifications in the aortic wall.

CORONARY ARTERIES

Diseases of the coronary arteries (CA) may result
in critical conditions [38, 39], primarily coronary ar-
tery disease, which is the most common cause of death
worldwide. CNN has the potential to become a valu-
able tool for locating and determining the degree of
pathological changes in the arteries, especially in mul-
tivessel diseases.

X-ray coronary angiography is a primary imaging
technique for diagnosing coronary diseases, consis-
ting of consecutive projection images. E. Nasr-Es-
fahani et al. (2016) [40] used convolutional ANN to
find and extract CA in X-ray coronary angiography
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images. However, low quality resolution and image
noise complicated processing of such images. Initial-
ly, an input angiogram was preprocessed to enhance
its contrast. Afterwards, the image was evaluated
using patches of pixels, and the network determined
the CA and background regions and extracted them.
A set of 1,040,000 patches was used for deep CNN
learning, which were obtained from 44 X-ray angi-
ography images. The large sample allowed for high
accuracy of CA and background region identifica-
tion — 93.5% and specificity of 97%. Fig. 3 shows
the ANN work, compared with manually annotated
images.

It is impossible to assess the coronary bed from
images using one projection angle. A 3D model pro-
vides more information, so research in this area would
be promising. Hence, J.M. Wolterink et al. (2019)
[41] proposed a method for coronary artery centerline
extraction in cardiac CT angiography using a CNN-
based orientation classifier (Fig. 4). Starting from a
single seed point placed manually or automatically
anywhere in the coronary artery, a tracker follows the
vessel centerline in two directions using the predic-
tions of the CNN. Tracking is terminated when no di-
rection can be identified with high certainty. The CNN
is trained using manually annotated centerlines in test
images.

Evaluation was performed using a test set con-
sisting of 24 coronary CT angiography (CCTA) test
images in which 96 centerlines were extracted. The
extracted centerlines had an average overlap of 93.7%
with manually annotated reference centerlines. This
study was a part of the Rotterdam Coronary Artery
Evaluation Framework, which allows for the evalu-
ation of algorithms for coronary artery centerline ex-
traction.

Intravascular optical coherence tomography
(OCT) is an optical imaging modality commonly
used in the assessment of coronary artery diseases
during percutaneous coronary intervention (PCI).
Y.L. Yong et al (2017) [42] proposed a linear-regres-
sion CNN to automatically perform vascular lumen
segmentation in OCT. The study used the total of 64
pullbacks acquired from 28 patients (25% / 75% male
/ female, the average age 59.71 (+ 9.61) years) using
Dragonfly™ Duo Imaging Catheter. These pullbacks
were randomly split into a training and a test set in
the ratio of 7:3. Benchmarking the results against the
gold standard for manual segmentation, the proposed
algorithm demonstrated the average CA wall location
accuracy of 22 microns and the Dice coefficient and
Jaccard similarity coefficient of 0.985 and 0.970, re-
spectively. The mean absolute error in luminal area
estimation was 1.38%.

Fig. 3. Results of the ANN work: blue — manual annotation, red — automatic segmentation [40]

198 Bulletin of Siberian Medicine. 2021; 20 (4): 193-204



Reviews and lectures

S
E
AEPP

Fig. 4. Fully automatic centerline extraction: @ — input images (upper row) and segmentation by the ANN (lower row); b — blue
spheres indicate the starting points of the algorithm predicting the most likely direction and radius of the artery [41]

Assessment of the fractional flow reserve (FFR)
[45] is a special form of CNN application in the field
of medical image processing. After detecting regions
of blocked CA during angiography, an interventional
cardiologist, following the guidelines, makes a deci-
sion on FFR application based on the percentage of lu-
men diameter reduction. However, such intervention
may be excessive in some cases, since stenosis could
be hemodynamically insignificant, despite the occlu-
sion. Therefore, there is a tendency for defining FFR
as a functional parameter of CA stenosis. The FFR is
defined as a distal / proximal pressure ratio in the ste-
nosed segment [46].

These parameters are measured during invasive
coronary angiography. To reduce the number of in-
vasive procedures, M. Zreik et al. (2018) [47] presen-
ted a method for automatic identification of patients
with functionally significant coronary artery stenoses,
employing deep learning analysis of the LV myocar-
dium at rest using CCTA. The automatic analysis of
the LV myocardium was used to assess the FFR in
the study. The analysis incorporated manual annota-
tions of the LV myocardium (Fig. 3) and traditionally
measured FFR parameters (n = 156) with the values
of 0.79 + 0.10. The neural network was tasked with

.

classifying patients into those with functionally signif-
icant stenosis (FFR < 0.78) and those without it (FFR
> 0.78). Quantitative evaluation of the segmentation
performed on the 20 test scans resulted in a Dice coef-
ficient of 91.4 +2.1% [43, 44]. However, the sensiti-
vity was 0.60—0.80 with the corresponding specificity
of 0.77-0.59, depending on the CNN settings. These
results cannot be properly transferred into clinical
practice as a classification model, although the net-
work helps noninvasively estimate FFR. The subse-
quent work of this team following the same princi-
ple did not demonstrate a significant increase in the
quality of classification despite changing the FFR
cut-off values for functionally significant stenosis
(FFR <£0.8) and adjusting the input data (n = 136) [48].

L. Itu et al. [49] proposed an efficient method for
determining FFR in 2016. Researches trained CNN di-
rectly on CT scans of the CAs, i.e. associated geomet-
ric features with hemodynamic significance. The input
data were multislice computed tomography (MSCT)
scans of 87 patients with 125 stenosed regions. The
researchers manually annotated arteries, reconstruct-
ed 3D models of the coronary vascular bed, and per-
formed numerical modeling of the fluid dynamics, as-
sessing the pressure gradient.
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The model was validated, and the diagnostic ac-
curacy for the detection of functionally significant
CAD was shown to be 75-85%. Then, 12,000 coro-
nary geometries were generated to artificially increase
the sample, so the model could assess the FFR. These
data were used to train CNN. Thus, the researchers in-
creased the training set from 87 to 12,000 objects (by
138 times). The results of the proposed neural network
were 99.7% consistent with the results of the numeri-
cal analysis (R =0.9998, p < 0.001). The trained CNN
was tested using input clinical MSCT data (n = 87)
with the resulting sensitivity of 81.6% and specificity
of 83.9%. This result is largely due to the imperfec-
tion of the computational fluid dynamics algorithms.
Nevertheless, this study seems to be the most prom-
ising, since FFR estimation is based primarily on the
CA anatomy. Perhaps, by combining two studies de-
scribed above, a synergistic effect could be achieved
by incorporating both LV and CA geometry analysis
to improve FFR estimation. It should be noted that the
method proposed in [41], allowing for the reconstruc-
tion of 3D representation of CA, can be combined with
the method in [49], which can lead to a breakthrough
in the field of noninvasive FFR estimation.

Detection of surgical devices

For TAVR procedures, the task of detecting cath-
eters remains urgent, as it could assist in determining
the optimal implant positioning.

The authors (2017) in [50] attempted to detect
guidewires using datasets comprised of X-ray images.
Overall, 22 image sequences were used in the study.
The testing task of the region proposal network was
divided into three steps. At the first step, 256 region
proposals of guide-wires were generated from a test
image as input data. At the second step, all the propos-
als were classified by the region, the region propos-
al was considered as the target, if its corresponding
score was larger than the threshold value. Finally, the
detected proposals with the highest score were selec-
ted. Following this algorithm, a total of 5, 092 imag-
es were obtained from the 22 original X-ray images.
Then, researches divided 22 sequences into two sets,
one — for training (19 sequences) and the rest — for
testing (3 sequences). The detection accuracy reached
89.2%. The detection results are shown in Fig. 5, a.

In 2019, H. Yang et al. [51] developed a method
for catheter segmentation in 3D ultrasound images
(Fig. 5, b) intending to use it during minimally inva-
sive interventions. Since it was a pilot study, four data
sets from four porcine hearts were used as the study

samples. The whole algorithm was divided into three
steps: 1) extracting the discriminating features from
each voxel; 2) classifying voxels into catheter-like and
non-catheter voxels using the CNN; 3) employing cu-
bic spline interpolation to identify the catheter in the
images. The proposed method can localize the cathe-
ter with the mean error of 2.1 mm while scanning the
images for 10 seconds. With the increase in the com-
puting power and optimization of the algorithm, this
method would be able to instantly process datasets.

In the same year, a team of researchers led by
H. Lee [52] used CNN to track and detect a periph-
erally inserted central catheter (PICC) and its tip. A
total of 600 DICOM images from 600 different pa-
tients containing the keyword “PICC” were used in
the study. The authors randomly selected 50 cas-
es from the entire cohort to be used as a validation
dataset and 150 cases to be used as a test dataset. The
remaining cases were utilized to train fully convolu-
tional networks (FCN) [53]. The neural networks de-
veloped by this team obtained absolute distances from
ground truth with the mean of 3.10 mm, a standard
deviation of 2.03 mm, and a root mean square error
of 3.71 mm per 150 test cases. Despite the fact that all
the images have a different angle and image noise, the
CNN is able to accurately segment PICC line, ECG
sensors, various objects (any additional structures),
and threads (Fig. 5, ¢).

PROMISING DIRECTIONS FOR CNN

ANN have proved useful in the field of graphic
data analysis: from medical image segmentation to as-
sessing and predicting the development of pathologies
in experimental and pilot studies. With the increasing
availability of high-performance systems, ANN could
find application in the form of commercial products,
but this would require solving a number of problems
related to clinical data and interaction between ANN
and infrastructures.

Besides training, ANN requires a sufficient number
of heterogenic data. The existing databases of annota-
ted MSCT, CT, and MR images used for CNN
training are limited. They usually include 100-300
images [19], while training often requires 1,000—
10,000 samples. Various methods of artificial data
generation and augmentation used in the studies have
their own limitations and, due to their nature, con-
tribute to the accuracy of CNN performance. Hence,
collecting, standardizing, and annotating medical data
can result in a promising project, especially concern-
ing the development of multicenter databases.
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¢ Contrast catheter ECG sensors

Add. objects

Fig. 5. Results of CNN performance in detecting medical devices: a — when detecting a catheter in the CA; the tip of the catheter is
marked with a square [50]; b — successful segmentation (left) and its original image (right) [51]; ¢ — when segmenting PICC (red),
ECG sensors (green), and various objects (dark cyan) [52]

Another feature is heterogeneity of the neural net-
work architectures. Research teams have been using
their own models of ANN, never combining them
with other CNNs for a cumulative effect. The different
networks mentioned in this review could have been
fused into a comprehensive system of neural network
analysis to increase accuracy of the results. Howe-
ver, in practice this rarely happens. Perhaps, it is due
to incompatibility of input data or neural network
architecture. The prospect of combining multidirec-
tional approaches for medical image segmentation or
disease prediction, i.e., development of an integrated
approach to neural network performance, can signifi-
cantly increase the sensitivity and specificity of the
results.

Finally, despite the development of computing
hardware and image processing, many performance
problems persist. The main calculations, such as se-
lection of weight coefficients at the CNN training
stage, happen on the graphic core of high-perfor-
mance video cards (GPU). Compared with training
on the central processing unit, GPU accomplishes the
task much faster. However, a real-time image analysis
(detection, segmentation) is usually carried out on less
sophisticated machinery. The development of cloud
computing in combination with CNN optimization
algorithms should significantly simplify practical im-
plementation of such systems by reducing the require-
ments to the PC computing power.

CONCLUSION

Over the past few years, ANN has been incorpo-
rated in many areas of our lives — from entertainment
(applications for photo processing in smartphones,
etc.) to engineering design systems (for example, gen-
erative technologies). The wide spread of machine
learning methods in everyday life occurred due to
the growth of computing power, both in stationary
and in wearable devices. Medical field is no excep-
tion — ANN have proven effective in a wide range of
tasks, including graphic data processing. Despite the
advances in this field, the development of ANN has
been slow for a number of reasons, several of which
are described above. In this brief review, the possi-
ble applications of CNN in the field of cardiology and
cardiac surgery have been shown. Although there is
room for improvements, the network could become a
reliable assistant for practitioners and researchers in
the future.

Data availability presents the main problem to
the implementation of CNN in healthcare. Thus, the
question remains open, whether it would be possible
to collect enough annotated data to train the ANN. Re-
cent studies have shown that the more data there is,
the better the results will be. However, it is not known
how the big data can be used.

The above-mentioned studies have demonstrat-
ed that deep learning methods assist in the research
process, but due to the uniqueness of the used data,
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researchers must search for other complex methods
that would allow efficient analysis of clinical data. It
can be concluded that the prospects of ANN applica-
tion in healthcare have no limitations.
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