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ABSTRACT

The aim of this study was to apply integrative physiological mathematical models to simulate physiological 
parameters in traumatic shock caused by lower limb blast injury. 

Materials and methods. At the first stage of mathematical modeling, we applied lumped parameter integrative 
physiological models, and at the second stage we used neural networks.

Results. We developed a clinical decision support system that allows to determine the intensity of blood loss in 
lower limb blast injuries according to physiological monitoring data. 

Conclusion. The developed approaches make it possible to partially solve the problem associated with the 
impossibility of accumulating a sufficient amount of medical data for a specific person to create an adequate 
personalized clinical decision support system.
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РЕЗЮМЕ

Целью настоящего исследования является применение интегративных физиологических математических 
моделей для моделирования физиологических показателей при травматическом шоке, вызванном взрыв-
ной травмой нижних конечностей. 

Материалы и методы. На первом этапе математического моделирования использовались интегративные 
физиологические модели с сосредоточенными параметрами, а на втором этапе – нейронные сети. 

Результаты. Разработана система поддержки принятия врачебных решений, позволяющая по данным фи-
зиологического мониторинга определять интенсивность кровопотери при минно-взрывной травме нижних 
конечностей. 

Заключение. Разработанные подходы позволяют частично решить проблему, связанную с невозможно-
стью накопления достаточного количества медицинских данных для конкретного человека с целью созда-
ния адекватной персонализированной модели поддержки принятия врачебных решений.

Ключевые слова: математическое моделирование, травматический шок, кровотечение, системы поддерж-
ки принятия врачебных решений
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INTRODUCTION

Assessing the severity and predicting the 
development of traumatic shock in mine blast injuries 
is a relevant task of modern military science. Blast 
injury is a special type of gunshot injury, characterized 
by a combination of injuries resulting from direct 

or indirect exposure to an explosion. Blast injury 
requires a special approach to the assessment of the 
severity and the condition of the wounded, which is 
the key to the effectiveness of medical and evacuation 
measures [1]. 

The development of traumatic shock is determined 
by the type of injury, the volume of mechanical damage 
to tissues and organs, blood loss and hypovolemia, 
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pain intensity and, a body reaction to aggression, 
and the duration of the pathological condition. From 
the pathogenic point of view, traumatic shock is a 
severe multicomponent reaction of the body to severe 
mechanical damage and is identified by clinicians as 
the first stage of the so-called traumatic disease. The 
main pathogenic element of shock is generalized 
tissue hypoperfusion, which disrupts homeostatic 
mechanisms and leads to irreversible cellular damage. 
Tissue hypoperfusion entails the development of 
irreversible metabolic, biochemical, and enzymatic 
cellular disorders, and in the absence of adequate 
treatment – death [2].

The concepts of “severity of injury”, “severity of 
damage”, and “severity of condition” are interrelated, 
but are not synonymous. The severity of the damage 
depends on its location, the extent of the anatomical 
damage, and the functional significance of the affected 
organ or anatomical and functional area. The severity 
of the condition is associated with the severity of the 
injury and the severity of functional disorders, time 
that passed since the injury, the initial condition of 
the person, and the amount of medical care provided. 
Methods for assessing the severity of injury using 
combined approaches, including parameters of the 
injury severity (morphological signs) and parameters 
of the condition severity (functional signs), have 
proven to be extremely effective [3–5]. This article 
focuses on the assessment of functional signs, which 
implies further development of the methodology with 
additional criteria for assessing the injury severity. 

Numerous classifications of acute blood loss 
with the development of shock ultimately come 
down to a discussion of the role of two components 
of impaired oxygen-carrying capacity of the blood. 
The first component is associated with impaired 
myocardial contractility  due to several reasons: 
hypoxia, myocardial ischemia, the effect of 
myocardial depression factors of various etiologies, 
concomitant pathology, intensive care strategy used, 
etc. The second component which is most discussed 
and directly caused by blood loss is associated with 
primary circulatory system disorders due to deficient 
circulating blood volume (CBV); therefore, with 
the development of metabolic and microcirculatory 
disorders, it is called hypovolemic shock. However, 
the cause of shock due to acute blood loss is of 
great practical importance only in early stages of the 
process, since subsequently, due to the convergence of 
pathophysiological parameters, it loses its specificity 
associated with the etiological factor [6]. Based on 

the above, the use of mathematical modeling may be 
effective for solving problems in developing a clinical 
decision support system (CDSS) to assess the severity 
and predict the development of traumatic shock 
when monitoring the condition of a serviceman at the 
frontline stages of evacuation, as well as to develop 
activities for simulation training.

The aim of this study was to use integrative 
physiological mathematical models to simulate 
physiological parameters in traumatic shock caused 
by lower limb blast injury.

MATERIALS AND METHODS
To simulate physiological parameters in traumatic 

shock caused by lower limb blast injury, we used 
the Pulse Physiology Engine [7], a multi-platform 
universal human physiology simulator, modified 
for work. The system is used to enable accurate 
and consistent physiology simulation in real time. 
The structure of the developed engine includes the 
main core, which is the basic software that manages 
the engine components using interfaces. Engine 
components include verified models of physiological 
mechanisms and pharmacokinetic (pharmacodynamic) 
models. These models belong to the class of lumped 
parameter mathematical models and are based on 
ordinary differential equations (ODEs) taking into 
account feedback mechanisms. 

Unlike systems in which lumped parameter models 
are typically used to model individual physiological 
functions and behaviors, the engine is used to 
examine the physiological state of the body based on 
physiological functions in each individual subsystem.

The cardiovascular subsystem includes the 
heart and blood vessels of pulmonary and systemic 
circulation, and the respiratory subsystem models 
various components of the airways. These two 
subsystems interact through the alveolar – capillary 
barrier to mediate gas exchange. The simulation 
involves diffusion due to partial pressure between 
liquid (blood) and gas (air). The result of the simulation 
is the pressure and volume values in the capillaries 
and airways. Feedback mechanisms occur through 
baroreceptors. The baroreceptor mechanism rapidly 
regulates blood pressure (BP) based on negative 
feedback. A drop in blood pressure is detected by 
baroreceptors and leads to an increase in heart rate 
(HR) and vascular resistance. These changes are 
needed to maintain constant blood pressure at rest by 
calculating the sympathetic (1) and parasympathetic 
(2) responses.
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	 ηs(Pa) = [1 + Pa/ Pa,s)
v]–1,	 (1)

	 ηp(Pa) = [1 + Pa/ Pa,s)
–v]–1,	 (2)

where v – baroreceptor parameter, Pa – mean blood 
pressure, Pa,s – fixed value of Pa. These values are 
then used to calculate changes in heart rate (HR) (3), 
elasticity (E) (4), systemic vascular resistance (R) (5) 
and compliance (C) (6).

dHR / dt = –τ –1
HR (–HR + αHRηs (Pa) + βHRηp (Pa) + γHR), (3)

dE / dt = –τ –1
E  (–E + αEηs (Pa) + γHR), 		     (4)

dE / dt = –τ –1
R  (–R + αRηs (Pa) + γR), 		     (5)

dC / dt = –τ –1
C  (–R + αCηs (Pa) + γC), 		     (6)

Here HR, E, R, and C are relative values of heart 
rate, elasticity, vascular resistance and compliance, 
respectively; α, β, γ – model parameters, τ – time 
parameters of the corresponding processes. These 
time-dependent changes are introduced into a model 
of the cardiovascular system by changing components 
with lumped parameters, scale factors determining 
vascular resistance, blood volume, and heart rate are 
defined.

In terms of mathematical modeling, the amount 
of physiological data generated is limited only by the 
variations of independent variables. Therefore, it is 
fundamentally possible to generate an arbitrarily large 
array of data for subsequent training of the CDSS 
model. The approach was tested by generating an 
array of data containing 10,000,000 records including 
changes in physiological parameters over 20 minutes: 
diastolic blood pressure, systolic blood pressure, heart 
rate, respiratory rate, blood oxygen saturation (SpO2), 
temperature in lower limb blast injury accompanied 
by acute blood loss of varying intensity (the modeling 
step for the rate of blood loss from the lower limb is 
10 ml / min). The total volume of generated data was 
16.2 GB in CSV format. 

RESULTS
The developed CDSS is a cyber physical system 

(CPS), which implies a set of physical processes 
and systems, computer and other devices, Internet 
resources and users coordinately interacting with 
one another through computer implementation of 
algorithms (protocols) aimed at solving a wide 
range of multi-purpose tasks in the field of network 
technologies. To visualize data in real time, 
software generating model signals was developed in 
accordance with the specified initial conditions of the 
mathematical model (Fig. 1). 

The physiological parameters obtained as a result of 
solving the direct problem of mathematical modeling 
represent an array of data in which variations of 
physiological parameters in dynamics are compared, 
allowing to identify the most likely combination of 
vital signs with different blood loss intensity.

The development of the final CDSS includes 
several stages: 1) building a personalized 
database (DB) of the examined persons based on 
the measurement of physiological parameters, 
modeling a number of physiological conditions 
in both normal and critical conditions on the basis 
of a computer simulator of human physiological 
functions used in the system; 2) training a classifier 
used in the system that can determine the nature of 
a person’s pathological condition by comparing 
the flow of measured physiological parameters 
of a person with a set of records in a personalized  
database.

а

b
Fig. 1. An example of the results of mathematical modeling 
of physiological parameters in traumatic shock caused by 
lower limb blast injury: а is the initial state; b is the state of 

compensated traumatic shock
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The priority task of the CDSS is to monitor data 
using sensors of vital physiological parameters, create 
the medical data flow in an established format using 
software, and use a software component to compare 
the data flow with a personalized database in order to 
detect a critical condition (CC). If a critical condition 
is detected, its type is determined (the CC is indexed), 
and information about the CC and its type is sent to 
the person responsible for making a clinical decision.

The general diagram of the developed CDSS 
is shown in Fig. 2, 3. In this system, module 1 is 
implemented on the basis of the Pulse Engine software 
package, which generates a personalized object 
database. Module 2, which classifies object states, is 
implemented as a set of deep neural networks trained 
on the object database. CDSS includes the following 
interconnected structural elements: array of X vectors 
of personalized database obtained by measuring state 
parameters (Fig. 2). 

Module 2 monitors the functional states of an 
object by comparing the input stream of measured 
physiological parameters of the object, detecting CC 
and indexing it. In the system under development, 
module 2 is implemented in the form of neural 
systems. The training of neural networks, which 
makes it possible to determine the CC of an object, 
is carried out using a set of CC from a personalized 
object database generated by module 1. 

The input array consists of X vectors of the patient’s 
primary data. Vector X has the following structure:  
X = (X 1, X 2). Here X 1 is a vector of anthropometric 
parameters, and X 2 is a vector of physiological 
parameters of the patient. 

The components of vector X1 include such 
parameters as height, weight, gender, baseline values 
of vital signs at rest and on exertion. If necessary, the 
list of input parameters can be significantly expanded. 
Currently, most of the input parameters (parameters 
of the endocrine system, hemostasis, nervous system, 
etc.) are recorded as average values.

The components of vector X2 include heart rate 
(number of contractions / min); SpO2, the normal level 
95%; respiration rate (breaths / min); blood pressure 
(mm Hg).; physical activity; temperature (℃). Let us 
consider the structural elements of the CDSS presented 
in Fig. 2 in more detail. 

The vector supplied to the input system (X) consists 
of the measured parameters of the patient’s condition. 
The list of patient parameters can be adjusted 
depending on the specific conditions of applying the 
CDSS. 

Module 1 generates a personalized patient database 
consisting of model vectors (Y) of the patient’s 
condition in a given range of model parameters  
(a = (a 1,…, a k). The Pulse Physiology Engine 
performs this function in the developed CDSS. 

For a given set of parameters of model a and input 
vector X, module 1 generates a time series of vectors 
Y (a, t) (the information flow of the object data) at 
the output. The time variable t with sample spacing 
δ is defined as the characteristic time of the modeled 
physiological process. For example, a step can be set 
to 1 minute for blood loss. You make the step δ “small” 
compared to its consequence, i.e. when the modeled 
process leads to a change in the state of an object (to 
a transition from a normal state to a critical one). For 
example, the time series appears when the process of 
blood loss does not immediately lead to the transition 
from a normal condition to a critical one (the effect is 
accumulated). 

In Fig. 3, the “External Expert” block includes the 
function of configuring the CDSS, which consists in 
setting the vector of model parameters, a = a (j), at 
which module 1 generates a vector flow of vectors Y ( 

j ) (a (j), t), representing the j CC of the object . It will 
be designated as cr. j. Let us assume that the value 
 j = 1 corresponds to the patient’s CC, which occurs in 
blood loss at a rate of 10 ml / min.

Module 2. The neural network should perform 
the function of assessing the state, including 
the critical condition of the object according to 
(tested) input vector of the measured parameters 
of the object’s state. The use of neural network 
machine learning algorithms makes it possible to 
turn from mathematically complex solutions of 
inverse problems for dynamical system through 
multiple integration to solving simple models with 
a known structure (weighting factors and activation 
functions). The input vector for the neural network is 
a time series of vectors Y (a,t) generated by module 
1. Accordingly, the output of the network will be a 
time series of vectors of the form Zcr (t 1) = (h 1 (t1),h 
2 (t1),…,h R (t1). 

Here the time variable t1 changes at a scale different 
from the time scale t set in module 1. Sample spacing 
Δ time t1 is greater than the step δ of a physiological 
process, for example, blood loss, i.e. t1 is a “slow” 
time compared to a “fast” time t.

The values h1(t1), h2 (t1),…,h R (t1) – components of 
vector Z cr (t1) – represent probabilities, for example, 
h1 (t1) – there is a probability that the patient is in CC 
1 in the time interval (t1, t1 + Δ). 
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 Fig. 2. General diagram of the clinical decision support system
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Vectors CC1 = Zcr1(t1)
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…
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determines the type of CC

Test vector Xt 
(Formats  

of vectors Xt  
and X agree)

Module 2:  
Classifier (the neural 
network is trained)

Indexed  
vector Zcr(t1) 
determines  
the CC type

The result is sent to the 
specialist

Neural networks are trained through operations 
with a personalized database object. Based on the 
results of the work of module 2, CDSS algorithms 
are obtained, which are “input – output” models.  
The input of the model consists of an array of data 
with vital parameters accumulated over a fixed 

period of time (60 seconds). At the output, the system  
forms a vector containing information about the  
state of the object and calculated physiological 
parameters that are highly informative content for 
medical specialists (rate of blood loss, volume of 
blood loss).

Fig. 3. Decision support system testing scheme
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A software application in Python was developed 
to build the final model of the СDSS based on 
neural network algorithms. Using the annotated 
data set generated at the previous stage, several 
neural networks are built including long short-term 
memory (LSTM), Autoencoder, and convolutional 
neural network (CNN). The final CDSS algorithm 
performs the following functions: classification of 
states according to physiological monitoring (heart 
rate, systolic BP, diastolic BP, SpO2, respiration rate, 
body temperature), restoration of the data array if 
some of the values are missing. If a patient is bleeding, 
the system will determine the rate of blood loss, the 
volume of blood loss and the time of blood loss onset. 
Several deep neural network architectures have been 
proposed:

1) LSTM network whose main task is to classify 
the physiological state. It belongs to recurrent neural 
networks capable of learning long-term dependencies. 
LSTM is specifically designed to detect events in a 
changing process mode. 

2) Autoencoder network whose main task is to 
recreate a data array if there are gaps and predict 
changes in the trajectory of parameters.

3) CNN network whose main task is to calculate 
the rate of blood loss, the volume of blood loss, and 
the time of the bleeding onset. A convolutional neural 
network is a specialized artificial neural network 
architecture that promotes efficient image recognition. 
The developed algorithm makes it possible to 
calculate a neural network using a sample of simulated 
parameters in Python.  When assessing the quality 
of the modeled structure, final accuracy was 0.992 
(99.1%) and 0.997 (98.9%) according to MSE and 
MAE, respectively.

CONCLUSION

The developed approaches make it possible 
to partially solve the problem associated with the 
inability to accumulate a sufficient amount of medical 

data for a particular person to create an adequate 
personalized model to support clinical decision-
making. In the future, the proposed algorithm will 
make it possible to create a hardware solution for 
assessing the need for medical care in case of lower 
limb blast injury, which is especially important 
at the pre-hospital phase and in emergency care 
during medical evacuation. Criteria for assessing 
the injury severity remain an important problem. 
The complexity of including these parameters in 
the mathematical model does not allow to use the 
developed methodology alone. In addition, to confirm 
the results of mathematical modeling, a set of clinical 
data is required to verify the model.
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