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ABSTRACT

The aim of this study was to apply integrative physiological mathematical models to simulate physiological
parameters in traumatic shock caused by lower limb blast injury.

Materials and methods. At the first stage of mathematical modeling, we applied lumped parameter integrative
physiological models, and at the second stage we used neural networks.

Results. We developed a clinical decision support system that allows to determine the intensity of blood loss in
lower limb blast injuries according to physiological monitoring data.

Conclusion. The developed approaches make it possible to partially solve the problem associated with the
impossibility of accumulating a sufficient amount of medical data for a specific person to create an adequate
personalized clinical decision support system.
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PE3IOME

Lenbio HACTOSIIETO MCCIIEJOBAHUS SIBISIETCS IPUMEHEHHE HHTETPATHBHBIX (PU3HOJIOTMYECKUX MaTeMaTHIeCKIX
Mozeneil A1t MOIeTMPOBaHUs (DH3HOJIOTUUSCKUX TTOKa3aTeled MpH TPaBMAaTHIECKOM IIIOKE, BBI3BAHHOM B3PHIB-
HOU TpaBMOM HIKHMX KOHEUHOCTEH.

MarepuaJjbl 1 MeToAbI. Ha mepBoM sTane MaTeMaTHUecKOro MOAEIUPOBAHMS HCHONB30BAINCH HHTETPATUBHEIC
(u3HoIOrNYecKue MOJIETH C COCPEJOTOUCHHBIMY TTapaMeTpaMu, a Ha BTOPOM 3Tare — HeHPOHHBIE CETH.

Pe3yabTaThl. Pa3paborana cucreMa MOoACPIKKH IPUHATHS BPaueOHBIX PELIEHMIT, TO3BOISIONIAS 110 JAHHBIM (H-
3MO0JIOTMYECKOT0 MOHUTOPHHTA ONPEAENATh HHTEHCHUBHOCTh KPOBOMOTEPHU NPU MUHHO-B3PBIBHOM TpaBMe HIKHUX
KOHEYHOCTEM.

3akiroueHue. PaSpa60TaHHLIG MOAXO0AbI MO3BOJIAKOT YaCTUYHO PCIINTH np06neMy, CBA3AHHYIO C HCBO3MOKHO-
CTBIO HAKOIUICHUA JOCTATOYHOT'O KOJIMYCCTBA MCANIUHCKUX JaHHBIX NJIsI KOHKPETHOI'O Y€JIOBEKaA C LICJIbIO CO3/1a-
HUS aJICKBAaTHOM HepCOHaﬂI/ICiI/IpOBaHHOﬁ MOJCIIN MOAACPIKKHN PUHATUSL Bpa‘le6HI)IX peH.IeHPIﬁ.

KiroueBble cj10Ba: MaTeMaTHUECKOE MOJCIUPOBAHNUE, TPABMATUYECKUH LIIOK, KPOBOTEUEHHUE, CUCTEMBI ITOICPIK-
KU NIPUHATHS BpayeOHbIX peIleHUH

Kon@aukTt unTepecoB. ABTOPHI JEKIAPUPYIOT OTCYTCTBHUE SIBHBIX U MOTEHIMAIBHBIX KOH()INKTOB HHTEPECOB,
CBSI3aHHBIX C MyOIUKaNNeil HACTOSIIEH CTaThH.

UcTtounnk punancupoBaHusi. ABTOPBI 3asBISAIOT 00 OTCYTCTBUHM (UHAHCHPOBAHUS MPU MPOBEJACHUU HCCIIEI0-
BaHUSI.

s uurupoBanus: TonvaueB U.B., Auucun A.B., bana A.M., Bpaxuos [I.A., lllanosanos A.B., Kotnos-
ckuit M.1O., Jlante B.B., bpazosckuii K.C. MatemaTiueckoe MoaennpoBaHue (HU3HOJIOTHUECKUX MTOKa3aTeIei
NPH TPAaBMAaTHYECKOM IIOKE, BBI3BAHHOM B3PBIBHOW TPABMOW HIKHHUX KOHEYHOCTEH. Broiemens cubupcroil me-
Ouyunsl. 2023;22(4):122-129. https://doi.org/10.20538/1682-0363-2023-4-122-129.

INTRODUCTION

Assessing the severity and predicting the
development of traumatic shock in mine blast injuries
is a relevant task of modern military science. Blast
injury is a special type of gunshot injury, characterized
by a combination of injuries resulting from direct

or indirect exposure to an explosion. Blast injury
requires a special approach to the assessment of the
severity and the condition of the wounded, which is
the key to the effectiveness of medical and evacuation
measures [1].

The development of traumatic shock is determined
by the type of injury, the volume of mechanical damage
to tissues and organs, blood loss and hypovolemia,
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pain intensity and, a body reaction to aggression,
and the duration of the pathological condition. From
the pathogenic point of view, traumatic shock is a
severe multicomponent reaction of the body to severe
mechanical damage and is identified by clinicians as
the first stage of the so-called traumatic disease. The
main pathogenic element of shock is generalized
tissue hypoperfusion, which disrupts homeostatic
mechanisms and leads to irreversible cellular damage.
Tissue hypoperfusion entails the development of
irreversible metabolic, biochemical, and enzymatic
cellular disorders, and in the absence of adequate
treatment — death [2].

The concepts of “severity of injury”, “severity of
damage”, and “severity of condition” are interrelated,
but are not synonymous. The severity of the damage
depends on its location, the extent of the anatomical
damage, and the functional significance of the affected
organ or anatomical and functional area. The severity
of the condition is associated with the severity of the
injury and the severity of functional disorders, time
that passed since the injury, the initial condition of
the person, and the amount of medical care provided.
Methods for assessing the severity of injury using
combined approaches, including parameters of the
injury severity (morphological signs) and parameters
of the condition severity (functional signs), have
proven to be extremely effective [3—5]. This article
focuses on the assessment of functional signs, which
implies further development of the methodology with
additional criteria for assessing the injury severity.

Numerous classifications of acute blood loss
with the development of shock ultimately come
down to a discussion of the role of two components
of impaired oxygen-carrying capacity of the blood.
The first component is associated with impaired
myocardial contractility due to several reasons:
hypoxia, myocardial ischemia, the effect of
myocardial depression factors of various etiologies,
concomitant pathology, intensive care strategy used,
etc. The second component which is most discussed
and directly caused by blood loss is associated with
primary circulatory system disorders due to deficient
circulating blood volume (CBV); therefore, with
the development of metabolic and microcirculatory
disorders, it is called hypovolemic shock. However,
the cause of shock due to acute blood loss is of
great practical importance only in early stages of the
process, since subsequently, due to the convergence of
pathophysiological parameters, it loses its specificity
associated with the etiological factor [6]. Based on

the above, the use of mathematical modeling may be
effective for solving problems in developing a clinical
decision support system (CDSS) to assess the severity
and predict the development of traumatic shock
when monitoring the condition of a serviceman at the
frontline stages of evacuation, as well as to develop
activities for simulation training.

The aim of this study was to use integrative
physiological mathematical models to simulate
physiological parameters in traumatic shock caused
by lower limb blast injury.

MATERIALS AND METHODS

To simulate physiological parameters in traumatic
shock caused by lower limb blast injury, we used
the Pulse Physiology Engine [7], a multi-platform
universal human physiology simulator, modified
for work. The system is used to enable accurate
and consistent physiology simulation in real time.
The structure of the developed engine includes the
main core, which is the basic software that manages
the engine components using interfaces. Engine
components include verified models of physiological
mechanisms and pharmacokinetic (pharmacodynamic)
models. These models belong to the class of lumped
parameter mathematical models and are based on
ordinary differential equations (ODEs) taking into
account feedback mechanisms.

Unlike systems in which lumped parameter models
are typically used to model individual physiological
functions and behaviors, the engine is used to
examine the physiological state of the body based on
physiological functions in each individual subsystem.

The cardiovascular subsystem includes the
heart and blood vessels of pulmonary and systemic
circulation, and the respiratory subsystem models
various components of the airways. These two
subsystems interact through the alveolar — capillary
barrier to mediate gas exchange. The simulation
involves diffusion due to partial pressure between
liquid (blood) and gas (air). The result of the simulation
is the pressure and volume values in the capillaries
and airways. Feedback mechanisms occur through
baroreceptors. The baroreceptor mechanism rapidly
regulates blood pressure (BP) based on negative
feedback. A drop in blood pressure is detected by
baroreceptors and leads to an increase in heart rate
(HR) and wvascular resistance. These changes are
needed to maintain constant blood pressure at rest by
calculating the sympathetic (1) and parasympathetic
(2) responses.
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where v — baroreceptor parameter, P, — mean blood
pressure, P — fixed value of P . These values are
then used to calculate changes in heart rate (HR) (3),
elasticity (£) (4), systemic vascular resistance (R) (5)
and compliance (C) (6).

dHR | dt =i (-HR + a0 (P) + B, (P) +7,,). 3)

dE/dt=—% (-E+an (P)+7,,), “
dE/dt=—t% (-R+an (P)+7,), ®)
dC/dt=-1¢ (R +an (P)+7,), (6)

Here HR, E, R, and C are relative values of heart
rate, elasticity, vascular resistance and compliance,
respectively; a, B, v — model parameters, T — time
parameters of the corresponding processes. These
time-dependent changes are introduced into a model
of the cardiovascular system by changing components
with lumped parameters, scale factors determining
vascular resistance, blood volume, and heart rate are
defined.

In terms of mathematical modeling, the amount
of physiological data generated is limited only by the
variations of independent variables. Therefore, it is
fundamentally possible to generate an arbitrarily large
array of data for subsequent training of the CDSS
model. The approach was tested by generating an
array of data containing 10,000,000 records including
changes in physiological parameters over 20 minutes:
diastolic blood pressure, systolic blood pressure, heart
rate, respiratory rate, blood oxygen saturation (SpO,),
temperature in lower limb blast injury accompanied
by acute blood loss of varying intensity (the modeling
step for the rate of blood loss from the lower limb is
10 ml / min). The total volume of generated data was
16.2 GB in CSV format.

RESULTS

The developed CDSS is a cyber physical system
(CPS), which implies a set of physical processes
and systems, computer and other devices, Internet
resources and users coordinately interacting with
one another through computer implementation of
algorithms (protocols) aimed at solving a wide
range of multi-purpose tasks in the field of network
technologies. To visualize data in real time,
software generating model signals was developed in
accordance with the specified initial conditions of the
mathematical model (Fig. 1).
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13
JJ\ .IA Jn 'In Jp‘\ JA ll“ Jﬂ, JA J, BP (mm Hg)
114/73
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SpO2 (“/67
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Fig. 1. An example of the results of mathematical modeling

of physiological parameters in traumatic shock caused by

lower limb blast injury: « is the initial state; b is the state of
compensated traumatic shock

The physiological parameters obtained as a result of
solving the direct problem of mathematical modeling
represent an array of data in which variations of
physiological parameters in dynamics are compared,
allowing to identify the most likely combination of
vital signs with different blood loss intensity.

The development of the final CDSS includes
several stages: 1) building a personalized
database (DB) of the examined persons based on
the measurement of physiological parameters,
modeling a number of physiological conditions
in both normal and critical conditions on the basis
of a computer simulator of human physiological
functions used in the system; 2) training a classifier
used in the system that can determine the nature of
a person’s pathological condition by comparing
the flow of measured physiological parameters
of a person with a set of records in a personalized
database.

Bulletin of Siberian Medicine. 2023; 22 (4): 122-129 125



Tolmachev L.V., Anisin A.V., Bala A.M. et al.

Mathematical modeling of physiological parameters in traumatic shock caused

The priority task of the CDSS is to monitor data
using sensors of vital physiological parameters, create
the medical data flow in an established format using
software, and use a software component to compare
the data flow with a personalized database in order to
detect a critical condition (CC). If a critical condition
is detected, its type is determined (the CC is indexed),
and information about the CC and its type is sent to
the person responsible for making a clinical decision.

The general diagram of the developed CDSS
is shown in Fig. 2, 3. In this system, module 1 is
implemented on the basis of the Pulse Engine software
package, which generates a personalized object
database. Module 2, which classifies object states, is
implemented as a set of deep neural networks trained
on the object database. CDSS includes the following
interconnected structural elements: array of X vectors
of personalized database obtained by measuring state
parameters (Fig. 2).

Module 2 monitors the functional states of an
object by comparing the input stream of measured
physiological parameters of the object, detecting CC
and indexing it. In the system under development,
module 2 is implemented in the form of neural
systems. The training of neural networks, which
makes it possible to determine the CC of an object,
is carried out using a set of CC from a personalized
object database generated by module 1.

The input array consists of X vectors of the patient’s
primary data. Vector X has the following structure:
X = (X, X ) Here X  is a vector of anthropometric
parameters, and X , is a vector of physiological
parameters of the patient.

The components of vector X, include such
parameters as height, weight, gender, baseline values
of vital signs at rest and on exertion. If necessary, the
list of input parameters can be significantly expanded.
Currently, most of the input parameters (parameters
of the endocrine system, hemostasis, nervous system,
etc.) are recorded as average values.

The components of vector X, include heart rate
(number of contractions / min); SpO,, the normal level
95%; respiration rate (breaths / min); blood pressure
(mm Hg).; physical activity; temperature (°C). Let us
consider the structural elements of the CDSS presented
in Fig. 2 in more detail.

The vector supplied to the input system (X) consists
of the measured parameters of the patient’s condition.
The list of patient parameters can be adjusted
depending on the specific conditions of applying the
CDSS.

Module 1 generates a personalized patient database
consisting of model vectors (Y) of the patient’s
condition in a given range of model parameters
(@ = (a ,.., a,). The Pulse Physiology Engine
performs this function in the developed CDSS.

For a given set of parameters of model ¢ and input
vector X, module 1 generates a time series of vectors
Y (a, t) (the information flow of the object data) at
the output. The time variable ¢ with sample spacing
0 is defined as the characteristic time of the modeled
physiological process. For example, a step can be set
to 1 minute for blood loss. You make the step J “small”
compared to its consequence, i.e. when the modeled
process leads to a change in the state of an object (to
a transition from a normal state to a critical one). For
example, the time series appears when the process of
blood loss does not immediately lead to the transition
from a normal condition to a critical one (the effect is
accumulated).

In Fig. 3, the “External Expert” block includes the
function of configuring the CDSS, which consists in
setting the vector of model parameters, a = a , at
which module 1 generates a vector flow of vectors ¥
5@, representing the j CC of the object . It will
be designated as cr. j. Let us assume that the value
J =1 corresponds to the patient’s CC, which occurs in
blood loss at a rate of 10 ml / min.

Module 2. The neural network should perform
the function of assessing the state, including
the critical condition of the object according to
(tested) input vector of the measured parameters
of the object’s state. The use of neural network
machine learning algorithms makes it possible to
turn from mathematically complex solutions of
inverse problems for dynamical system through
multiple integration to solving simple models with
a known structure (weighting factors and activation
functions). The input vector for the neural network is
a time series of vectors Y (a,t) generated by module
1. Accordingly, the output of the network will be a
time series of vectors of the form Z_(t ) = (h , (t).h
L(t), b (1)

Here the time variable ¢, changes at a scale different
from the time scale ¢ set in module 1. Sample spacing
A time 7, is greater than the step 6 of a physiological
process, for example, blood loss, i.e. 7, is a “slow”
time compared to a “fast” time z.

The values h (), h, (t),....h , (t,) — components of
vector Z  (t,) — represent probabilities, for example,
h, (t,) — there is a probability that the patient is in CC

1 in the time interval (z,, ¢, + 4).
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Fig. 2. General diagram of the clinical decision support system
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Fig. 3. Decision support system testing scheme

Neural networks are trained through operations
with a personalized database object. Based on the
results of the work of module 2, CDSS algorithms
are obtained, which are “input — output” models.
The input of the model consists of an array of data
with vital parameters accumulated over a fixed

period of time (60 seconds). At the output, the system
forms a vector containing information about the
state of the object and calculated physiological
parameters that are highly informative content for
medical specialists (rate of blood loss, volume of
blood loss).
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A software application in Python was developed
to build the final model of the CDSS based on
neural network algorithms. Using the annotated
data set generated at the previous stage, several
neural networks are built including long short-term
memory (LSTM), Autoencoder, and convolutional
neural network (CNN). The final CDSS algorithm
performs the following functions: classification of
states according to physiological monitoring (heart
rate, systolic BP, diastolic BP, SpO,, respiration rate,
body temperature), restoration of the data array if
some of the values are missing. If a patient is bleeding,
the system will determine the rate of blood loss, the
volume of blood loss and the time of blood loss onset.
Several deep neural network architectures have been
proposed:

1) LSTM network whose main task is to classify
the physiological state. It belongs to recurrent neural
networks capable of learning long-term dependencies.
LSTM is specifically designed to detect events in a
changing process mode.

2) Autoencoder network whose main task is to
recreate a data array if there are gaps and predict
changes in the trajectory of parameters.

3) CNN network whose main task is to calculate
the rate of blood loss, the volume of blood loss, and
the time of the bleeding onset. A convolutional neural
network is a specialized artificial neural network
architecture that promotes efficient image recognition.
The developed algorithm makes it possible to
calculate a neural network using a sample of simulated
parameters in Python. When assessing the quality
of the modeled structure, final accuracy was 0.992
(99.1%) and 0.997 (98.9%) according to MSE and
MAE, respectively.

CONCLUSION

The developed approaches make it possible
to partially solve the problem associated with the
inability to accumulate a sufficient amount of medical

Authors’ information

data for a particular person to create an adequate
personalized model to support clinical decision-
making. In the future, the proposed algorithm will
make it possible to create a hardware solution for
assessing the need for medical care in case of lower
limb blast injury, which is especially important
at the pre-hospital phase and in emergency care
during medical evacuation. Criteria for assessing
the injury severity remain an important problem.
The complexity of including these parameters in
the mathematical model does not allow to use the
developed methodology alone. In addition, to confirm
the results of mathematical modeling, a set of clinical
data is required to verify the model.
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