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ABSTRACT

Numerous studies addressing the fundamental aspects of atherosclerosis emphasize the importance of systematically
organizing the accumulated data. The second part of this lecture provides an analysis of the critical mechanisms
involved in the development of atherosclerosis. This analysis includes a discussion on the roles of inflammasomes,
hemodynamic disorders within the vascular wall, vasa vasorum pathology, endothelial cell dysfunction, matrix
metalloproteinases, and the Notch and Wnt signaling pathways in the process of atherogenesis. Additionally, it
explores the specific characteristics of the pathogenesis of vascular calcification associated with atherosclerosis.
A dedicated section thoroughly reviews contemporary pharmacotherapeutic strategies for managing atherogenic
dyslipidemia. A comprehensive analysis of current concepts regarding the pathogenesis of atherosclerosis, along
with promising approaches to drug therapy, will facilitate the identification of future research directions within the
field of lipidology. This endeavor has the potential to elevate preventive cardiology to a new standard.
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PE3IOME

HOCTI/I)KQHI/IH MHOTI'OYUCJICHHBIX nccneuosaﬂnﬁ B H3y‘[eHI/II/I (byH):laMeHTaJ'[belX ACIICKTOB aTepOCKnepo3a ):lI/IKTy-
T HGOGXOI[I/IMOCTI) CUCTEeMAaTU3aLM1 HAKOINVICHHBIX JaHHBIX. BO BTOpOﬁ YaCTH JICKIIUU l'lpe):lCTaBJ'leH aHalu3 pO.]'lI/I
KJTFOUCBBIX MEXaHM3MOB peai3alii BOCIAIUTEILHOTO MPOIecca B pa3BUTHH aTepockiiepo3a. PaccMoTpeHa posib
uH()IAMMACOMbI, HAPYIICHHI FeMOJINHAMUKHU B COCYIHUCTON CTCHKE, MATOJIOTHU Vasa vasorum, TACHYHKIUHA SH-
JIOTEJTMOIUTOB, MATPUKCHBIX METAIIIONPOTEHHA3, CUTHAIBHBIX myTeil Notch 1 Wnt B aTeporenese, a Takke acco-
[IUUPOBAHHBIC C ATCPOCKICPO30M OCOOCHHOCTH MATOreHe3a KalblU(pHKAIUU COCYIOB.

OtnenpHBIM pa3aciioM MnpeacTaBliCH 0630p COBPEMEHHBIX (bapMaKOTCpaHCBTI/I'IeCKI/IX oAXO0A0B K JICHCHUIO aTe-
pOFeHHOﬁ JUCTTATIUACMHUHU. KowmmiekcHpii aHamms3 COBPEMEHHBIX Hpe[[CTaBJ'IeHPIfI O IMaTOTCHE3€ aTEPOCKIIEpPO3a U
TMEPCIEKTUBHBIX METOJ10B J'[eKapCTBeHHOfI TEparuu Mmo3BOJIUT 0003HAYHTH JambHEHTIIe HalpaBJICHUA UCCJIE10BA-
HUI B JIMTTUIOJIOTHU U BBIBECTHU BO3MOYKHOCTHU HpO(i)HHaKTH‘lCCKOﬁ KapuoJIOrui Ha NOTCHIHUAJIbHO HOBBIN Ypo-
BCHb.

Kawuesble cjioBa: aTepocKiiepos, BocnaneHue, nHpraMmmacoma, arepoma, nHruoutopsl PCSK9

Konduaukt uHTEepecoB. ABTOPHI 3asBISIIOT 00 OTCYTCTBHUHM KOH(IUKTa HHTEPECOB, CBS3AHHBIX C MyOJUKaIMeH
HACTOSLIECH CTAaThH.

HUctouHuk q)ﬂHchHpOBaHﬂﬂ. ABTOpH 3asIBIISIOT 00 OTCYTCTBHUHU (bl/IHaHCI/IpOBaHI/Iﬂ Ipy MPOBEACHUUN UCCIIEN0-
BaHUA.

s uurupoBanusi: ABarumsH A.A., Kakrypckuii JI.B., Ypazosa O.U., Tpopumenko A.U., Cykuacsn JL.M.,
Koran E.A., lemypa T.A., [lorocosa H.B. Atepockiepo3 u BocnajeHue — myTh OT MaTOreHe3a K Tepanuu: 0030p
COBPEMEHHOT0 COCTOSIHUSI ITPo0IieMbl (dacth 2). browiemens cubupcrkou meduyunst. 2025;24(2):124-140. https://
doi.org/10.20538/1682-0363-2025-2-124-140.

Bulletin of Siberian Medicine. 2025; 24 (2): 124-140

125



Avagimyan A.A., Kaktursky L.V., Urazova O.l. et al.

Atherosclerosis and Inflammation the Path from Pathogenesis to Treatment

INTRODUCTION

Atherosclerosis is one of the primary challenges in
preventive cardiology, which has traditionally received
significant attention in the development of national
programs for the primary and secondary prevention
of atherosclerosis-associated cardiovascular diseases
(aCVD) and cardiac rehabilitation programs [1-4].

According to data from the multicenter study
ESSE-RF, which included respondents aged
25-64 years from 13 regions of the Russian Federation
(RF), the prevalence of hypercholesterolemia
(total cholesterol (TC) in the blood =5.0 mmol/L)
averaged 58.40+0.34%. This indicates an extremely
high frequency of atherogenic dyslipidemia within
the study population [5]. In the United States, data
from the National Health and Nutrition Examination
Survey revealed that levels of TC over 200 mg/dL
and low-density lipoprotein cholesterol (LDL) =130
mg/dL were found in 32.8% and 36.2% of examined
individuals, respectively [6]

According to the multicenter, cross-sectional,
observational study EURIKA (European Study on
Cardiovascular Risk Prevention and Management
in Usual Daily Practice), which included data from
12 countries (Austria, Belgium, Germany, France,
Greece, Turkey, and others, including Russia) with
a final sample size of 7,641 patients, the proportion
of individuals with atherogenic dyslipidemia was
over20% [7]. The EURIKA population comprised
European patients aged at least 50 years who had
at least one risk factor for cardiovascular disease
(CVD) but no history of CVD in their medical
records. Additionally, the STEPs 2021 study reported
that the proportion of individuals with atherogenic
dyslipidemia (based on all lipidogram indicators)
among the population of the Islamic Republic of Iran
was 81.0% [8].

A cross-sectional study conducted as part of the
China-PEACE project involved 2,660,666 individuals
aged 35 to 75 years from all provinces of the People’s
Republic of China between 2014 and 2019. Among
those examined, the prevalence of atherogenic
dyslipidemia was found to be 33.8% [9].

These findings indicate that atherogenic
dyslipidemia is a global problem, as evidenced by
the prevalence rates of lipid metabolism disorders
observed across diverse populations with varying
national dietary habits. Consequently, studying the
pathogenesis of atherosclerosis and developing new
therapeutic methods aimed at normalizing lipid

metabolism and stabilizing inflammatory status are
critically important. The role of inflammation in
the development of ASCVD is well established and
underscores the urgency of this research.

Currently, atherosclerosis is perceived by the
scientific community as an inflammatory disease of
the arteries that triggers the mechanisms of vascular
aging and damage to target organs [10, 11]. Given
this fact, the study of atherogenesis problems from
the standpoint of inflammatory theory is a relevant
fundamental direction with direct access to real
clinical practice [12-16].

In the second part of this lecture, attention will be
directed towards examining the clinically relevant
aspects of inflammation pathogenesis in the context of
atherosclerosis development. Furthermore, a summary
of therapeutic methodologies, grounded in the latest
progressions in clinical lipidology, will be presented.

The Role of Inflammasome in Atherogenesis

In the context of the leading role of inflammation
in the pathogenesis of atherosclerosis, it is worth
emphasizing the role of the inflammasome, since
this intracellular multiprotein complex is known
to play an crucial role in the relationship between
lipid metabolism and low-grade inflammation of the
vascular wall [17]. Cholesterol crystals and oxidized
lipoproteins activate monocytes and macrophages,
generating an inflammatory response followed by
the production of proinflammatory interleukins (IL)
- IL-1B and IL-18. Oxidized LDL is recognized by
CD36 receptors on recruited monocytes, which leads
to activation of the NLRP3 inflammasome [18].
In lipopolysaccharide (LPS)-treated monocytes,
saturated fatty acids can induce the release of IL-1p,
which is not observed with unsaturated fatty acids [19].
Like monocytes, endothelial cells also demonstrate
NLRP1 activation after stimulation with plasma
containing high levels of triacylglycerols and VLDL
[20]. In addition to lipid metabolism disorders, other
mechanisms are involved in triggering atherogenesis-
associated inflammation.

Hypoxia and hypoxia-associated signaling
through hypoxia-inducible factor (HIF)-la in
atherosclerotic plaques enhance NLRP3 expression
in macrophages and slow the degradation of prolL-1[3
[21].Hemodynamically induced shear stress increases
the expression of sterol regulatory element-binding
protein 2 (SREBP2) via mechanotransduction,
triggering a new wave of atherogenesis. In this
context, elevated NLRP3 expression in endothelial
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cells plays an crucial role in maintaining aberrant lipid
metabolism [22]. The development of dysfunctional
autophagy in atherosclerotic plaques is also significant
in the process of atherogenesis, as evidenced by the
increased expression of autophagy markers ATG13
and LC3 in aortic endothelial cells. Notably, in
mice lacking the ATGS protein which is essential
for autophagy, there is an increase in inflammatory
activity and plaque size. These findings underscore
the importance of autophagy in the pathogenesis of
ASCVD [23]. In mice fed a high-cholesterol diet,
hematopoietic deletion of NLRP3, ASC, or IL-1o/
IL-1pB resulted in reduced atherogenesis and lower
levels of IL-18 [24]. Furthermore, pharmacological
inhibition of NLRP3 with colchicine increases the
number of smooth muscle cells (SMCs) and collagen
within the atherosclerotic plaque, promoting its
transition to a more stable phenotype [25].

Vascular Shear Stress and Atherosclerosis

Under normal conditions, uniform laminar blood
flow acting on the intima of the arteries induces
the secretion of nitric oxide (NO). In turn, NO
released under physiological conditions regulates
the tone of the vascular wall and helps maintain the
anti-inflammatory and antithrombotic properties
of the endothelium. It is well established that the
formation and progression of atheroma occurs
focally, primarily around bifurcations or at the points
where lateral branches depart from the artery, that is,
in areas characterized by uneven (turbulent) blood
flow [26]. This nature of the blood flow creates low
wall shear stress (WSS), which induces vascular
inflammation and contributes to the development of
atherosclerosis. WSS refers to the tangential force of
mechanical friction exerted by flowing blood, acting
longitudinally on the endothelium surface of the
arterial wall [27].

Specific endothelial biomechanical receptors
within the endothelial glycocalyx detect mechanical
stimuli and differentiate between laminar and turbulent
types of blood flow, converting WSS into biochemical
signals [28]. Consequently, endothelial dysfunction
induced by WSS is closely linked to inflammation and
lipid metabolism disturbances in the vascular wall,
thereby promoting the progression of atherosclerosis.
It is worth noting that, although atherogenesis initially
occurs in regions of the arterial wall exposed to
low WSS, areas of high WSS that develop around
growing atherosclerotic plaques are associated
with the formation of an unstable plaque phenotype

[29].As WSS increases, the functioning of the
mechanoreceptor KLK 10 diminishes, which mediates
the transformation of the normal transcriptome
signature of arteries into an emergency response
profile [30]. Inflammatory changes within the plaque
lead to hypoxia, initiating neovascularization from
the adventitial vasa vasorum, which contributes to
increased plaque vulnerability [31]. In discussing the
vasa vasorum, it is important to highlight the theory
that atherosclerosis may initiate specifically from these
microvessels within the vascular wall of the arteries
[32]. The microvascular network of the vasa vasorum
(including arterial, venous, and lymphatic vessels of
varying calibers) serves as a crucial anatomical and
functional structure that meets the metabolic needs of
the adventitia and perivascular adipose tissue, as well
as the outer part of the medial layer of large arteries
[33]. Dysregulation of blood flow in the vasa vasorum
is implicated in the pathogenesis of atherosclerosis, as
evidenced by the presence of multiple neuroimmune
cardiovascular interfaces (NICIs) in the outer layers
of atherosclerotic arteries. These interfaces are
characterized by axon terminals located near the
SMC media and macrophages in perivascular adipose
tissue [34].Numerous newly formed vasa vasorum are
abundant in lipid-rich plaques and express elevated
levels of cell adhesion molecules, such as ICAM-1
and VCAM-1. This expression facilitates an excessive
influx of immune cells and is associated with plaque
instability [35].

Although the concept of initial vasa vasorum
pathology in the initiation of atherogenic changes
currently has several gaps, their role in atherogenesis
is extremely important, both within the framework
of the “outside-in” concept and in the classical
approaches to study. During vascular wall
inflammation, vascular endothelial (VE) cadherin is
phosphorylated by Src kinase 3 at the intercellular
junctions of the endothelium. Concurrently,
dephosphorylation of VE cadherin by VE protein
tyrosine phosphatase (VE-PTP) prevents its
internalization and stabilizes the adhesive junctions
between endothelial cells [36, 37].

Additionally, the dissociation of VE-PTP from VE
cadherin leads to leukocyte diapedesis and increased
vascular permeability in vivo, as demonstrated in
a model induced by vascular endothelial growth
factor (VEGF) and endotoxin [38]. It is known
that lymphocyte binding to the adhesion molecule
VCAM-1, along with the stimulation of endothelial
cells by VEGF, triggers a common signaling cascade
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that includes Ras-associated botulinum toxin
substrate C3, NADPH oxidase, reactive oxygen
species, and proline-rich tyrosine kinase 2 [39, 40].
However, the molecular mechanisms regulating the
kinetics of the interaction between VE-PTP and VE-
cadherin remain largely unexplored. Signaling protein
2 containing the CUB-EGF domain (SCUBE2) ensures
the integrity of the vascular wall by recruiting VE-
PTP to dephosphorylate VE-cadherin. This process
promotes the stabilization of endothelial adherens
junctions and preserves the barrier function of the
intima [41]. Studies involving genetic overexpression
and pharmacological induction of SCUBE2 further
support the concept that therapeutic regulation of
SCUBE2 may be beneficial for stabilizing the vascular
bed [42].

Inflammation also stimulates the development
of dystrophic calcification in the necrotic lesion of
atherosclerotic plaques as a healing response to the
inflammatory activation of macrophages [43]. The
death of macrophages and SMCs releases vesicles
that serve as “nucleation sites” for the deposition of
hydroxyapatite crystals. Their aggregation leads to
the formation of microcalcifications with diameters
of less than 50 pm, which can penetrate the fibrous
cap of the plaque [44, 45]. Microcalcifications
significantly contribute to the instability of
atherosclerotic plaques; furthermore, they induce
mechanical stress within the fibrous capsule,
generating new inflammatory impulses within the
plaque [46]. It is also important to note that ectopic
deposition of calcium hydroxyapatite salts occurs
long before the onset of atherocalcinosis.

In  atherosclerotic  inflammation,  various
cell types, including wvascular SMCs, resident
pericytes, circulating stem cells, and adventitial
cells, differentiate into osteoblastic cells, leading to
vascular calcification [47]. For example, SMCs lose
part of their contractile phenotype, as evidenced by
downregulation of a-smooth muscle actin (a-SMA)
and SM-22 expression, followed by abnormal
upregulation of genes involved in osteogenesis,
such as Runt-related transcription factor 2 (Runx2),
osteopontin, osteocalcin, etc. [48, 49]. Vascular
calcification is initiated by matrix vesicles produced
by osteoblast-like cells that serve as deposition sites
for hydroxyapatite crystals [50]. Meanwhile, the
overexpression of matrix metalloproteinase MMP-
9 leads to the degradation of elastin, which in turn
promotes the transition of SMCs from a contractile to
a producing phenotype [51].

The Role of Inflammation in Plaque
Destabilization

Atherosclerotic plaques are primarily composed of
extracellular matrix (ECM), which includes collagen,
elastin, proteoglycans, and glycosaminoglycans
synthesized by SMCs in the arterial wall [52]. Under
conditions of atherogenic inflammation, cytokines
such as IL-1B andtumor necrosis factor o (TNF-a)
induce the secretion of metalloproteinases, particularly
MMP-1, MMP-8, MMP-9, MMP-12, and MMP-13,
by macrophages under the regulation of microRNA
[53-55].

MMPs catalyze the destruction of interstitial
collagen, leading to thinning and weakening
of the fibrous capsule, which contributes to plaque
instability [56]. In addition, the stability of the
fibrous capsule is influenced by the cross-linking
of collagen fibers, a process mediated by the
enzyme lysyl oxidase (LOX), which is expressed by
endothelial cells [57]. Endothelial dysfunction and
the phenotypic transition of SMCs are associated with
a decrease in LOX activity, resulting in abnormal
collagen cross-linking. This weakens the fibrous
capsule and increases the presence of soluble collagen
forms that are subject to MMP-mediated degra-
dation [58].

In unstable atherosclerotic plaques, the activity
of MMP-7 and MMP-9 is increased, and tissue
expression of MMP-2 and MMP-9 raises alongside a
decrease in the expression of type IV collagen [59].
Among the three types of unstable atheromas, lipid-
type plaques exhibit the highest tissue expression
of MMP-9 compared to dystrophic-necrotic and
inflammatory-erosive types, while type IV collagen
expression is predominant in dystrophic-necrotic
atherosclerotic plaques. In addition to MMPs, an
8-fold significant increase in APOE gene expression
(»<0.001) was observed in unstable atherosclerotic
plaques of the dystrophic-necrotic type. In contrast,
stable atherosclerotic plaques showed an 8-fold
statistically significant increase in LDLR and APOB
gene expression (p<0.001) [60].

Interestingly, the level of adiponectin in an
atherosclerotic plaque 1is directly proportional
to serum levels of HDL-C, while secretin levels
are inversely proportional. Furthermore, the
glucagon levels in conditionally intact intima are
2.1 times lower than those in fragments with stable
atherosclerotic plaque; it has also been established
that secretin levels are directly associated with plaque
stability [61].
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In recent decades, more and more attention has
been paid by researchers to such a phenomenon as
atherosclerotic plaque erosion. Plaques that have
undergone superficial erosion demonstrate less lipid
accumulation, a less pronounced necrotic core, a
moderate number of inflammatory cells, and an intact
fibrous capsule [62]. Thrombi formed as a result of
superficial erosions are white and rich in platelets,
while thrombi associated with plaque rupture are red
(rich in fibrin and erythrocytes) [63].

Parallels between Notch and Wnt Signaling
Pathways and Atherosclerosis

Notch is a cellular signaling pathway that mediates
intercellular communication and is involved in the
regulation of homeostasis [64]. The Notch cascade
protects against endothelial dysfunction induced
by pro-inflammatory cytokines and regulates the
phenotypic transition of cells [65]. Increasing evidence
suggests that Notch plays a crucial role in signaling
related to changes in WSS [66].

Activation of the Notch pathway creates an
anti-inflammatory, anti-atherogenic  environment
that helps maintain endothelial integrity, including
the preservation of adherens junctions between
endothelial cells [67]. Additionally, Notch is a key
signaling cascade for regulating the structure and
function of SMCs. Expression of Notch receptors 2
and 3, as well as the primary ligand Jagged1, has been
observed in SMCs [68]. Mutations in Notch 2 and 3
can lead to defects in SMC development, providing
a strong evidence for the involvement of Notch
signaling in regulating vascular differentiation during
angiogenesis [69]. Furthermore, Jaggedl-Notch3
signaling mediated through nidogen-2 is essential for
maintaining the contractile phenotype of SMCs in
vitro and in vivo [70].

Wnt is a multitarget signaling cascade
characterized by three main intracellular signaling
pathways: the canonical pathway (Wnt/p-catenin), the
non-canonical Wnt/PCP pathway (which regulates
cytoskeletal dynamics through the activation of JNK
(C-Jun N-terminal kinase) by small G proteins), and
the Wnt/Ca*-dependent pathway [71]. In addition
to its roles in cell proliferation and differentiation,
the Wnt pathway is also involved in regulating lipid
metabolism [72]. The stabilization of B-catenin via
Wnt signaling, along with the activation of fatty acid
synthesis via Akt/mTOR signaling, plays a central
role in lipid metabolism in steatotic liver [73]. An
inverse relationship has been demonstrated between

Wnt activation and the severity of atherosclerosis.
Specifically, activation of the Wnt pathway following
lipid depletion enhances the IL-4 response in
macrophages via the PGE2/STAT3 axis. Dickkopf-2
(DKK2),a negative regulator of Wnt/B-catenin
signaling, is implicated in macrophage activation
during atherosclerosis [74].

Knockdown of DKK2 significantly reduces the
expression of genes associated with the polarization
of macrophages toward the pro-inflammatory M1
phenotype while increasing the level of polarization
markers associated with the anti-inflammatory
M2 phenotype. This knockdown also significantly
attenuates the formation of foam cells [75].

The Role of Microrna in the Pathogenesis
of Atherosclerosis

The role of microRNA in atherosclerosis is
multifaceted. For example, miR-520c-3p protects
endothelial cells from damage and stabilizes
endothelial function by regulating key aspects of
pathogenesis, such as cell proliferation, apoptosis,
and endothelial cell adhesion [76]. Moreover, miR-
181a-5h, miR-181a-3p, and miR-250bmodulate
the severity of chronic low-grade inflammation in
the vascular wall by suppressing the expression
of the nuclear factor NF-xB, thereby slowing the
progression of stromal-vascular dystrophic changes
[77]. Conversely, miR-488 [78] and miR-183-5p
[79] exhibit proatherogenic effects by stimulating
functional reorganization of SMCs and exacerbating
inflammatory infiltration in the vascular wall.
MicroRNAs also demonstrate a dual effect on
macrophages. Thus, miR-10a, miR-210, and miR-
383 stabilize mitochondrial metabolism and the redox
status of cells, leading to a reduction in apoptosis and
necroptosis [80]. Notably, miR-181a-3p/5p and miR-
155-5p have pronounced atheroma-stabilizing effects
[81]. However, high levels of miR-155 correlate
with NLRP3 activation via ERK1/2 kinase [82]. In
addition, miR-216a exhibits proatherogenic potential
by enhancing inflammation through the Smad3/NF-
kB cascade [83].

A Look at Lipid-Lowering Therapy through the
Prism of the Inflammatory Theory of Atherogenesis

In parallel with the active study of the molecular
mechanisms of atherogenesis, the drug arsenal of
lipid-lowering therapy is expanding, which increases
the capabilities of modern cardiology.

The basic drugs of lipid-lowering therapy are
traditionally considered to be HMG-CoA reductase
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inhibitors — statins (in particular, rosuvastatin,
pitavastatin and atorvastatin) both without and in
combination with ezetimibe - a selective inhibitor of
cholesterol absorption targeting the sterol transporter
Neimann-Pick-likel (NPC1L1)[84]. This combination
is considered generally accepted and complies with the
recommendations of both the Russian and European
Cardiology Societies.

In the context of this lecture, it is important to
focus on the anti-inflammatory potential of statins.
Analyzing the mechanism of action of statins reveals
that part of their pleiotropic effects can be attributed to
the blockade of the mevalonate pathway of cholesterol
synthesis, which reduces the levels of isoprenoid
intermediates such as farnesyl pyrophosphate and
geranyl-geranyl pyrophosphate. A decrease in
these levels changes the prenylation of proteins,
influencing the effects of statins on autophagy and
inflammation [85]. Moreover, statins can suppress
the adhesion and migration of inflammatory cells by
reducing the expression of the integrin dimer CD11,
the immunoglobulin superfamily protein VCAM-
1, and leukocyte functional antigen-1 (LFA-1).
They also decrease the expression of monocyte
chemotactic protein-1 (MCP-1) and interleukin-8
(IL-8) [86].

Another anti-inflammatory mechanism of statins
is their ability to reduce the levels of interferon y
(INF-y), oxidized LDL (oxLDL), and serum apoA-I
[87, 88]. Several potential mechanisms through
which statins exert their anti-inflammatory effects
via Toll-like receptor (TLR) signaling pathways have
also been identified: inhibition of the prenylation
of regulatory proteins, direct or indirect inhibition
of NF-kB and MyD88/NF-kB axis, and activation
of antioxidant response elements (ARE) [89]. In
addition, statins can reduce signaling mediated by
transforming growth factor TGF-1p in T lymphocytes,
suppress oxLDL-induced maturation of human
dendritic cells, impair T lymphocyte activation, and
stimulate the pool of regulatory T lymphocytes [90].
Further studies are needed to elucidate the complete
molecular mechanisms and multifaceted anti-
inflammatory potential of statins.At the same time,
several issues persist regarding statin use, particularly
their side effects, such as statin-induced myopathy and
hyperglycemia. Other concerns include partial and
complete resistance to statins, the presence of residual
cardiovascular risk, and elevated levels of triglyceride-
rich lipoproteins, despite achieving target levels of
total cholesterol, LDL cholesterol, and triacylglycerols

[91-97]. In light of these challenges, new drugs aimed
at normalizing cholesterol metabolism are currently
being actively developed and introduced into clinical
practice. Among the extensive list of lipid-lowering
agents, the most promising include

1) PCSKY9-modifying agents

Proprotein convertase subtilisin-kexin type 9
(PCSK9) inhibitors, particularly evolocumab and
alirocumab, are innovative drugs that are actively
utilized in modern clinical practice [98-100]. The
pivotal studies demonstrating the lipid-lowering
potential of evolocumab and alirocumab are
FOURIER [101] and ODYSSEY-OUTCOMES [102]
trials. According to a meta-analysis of 41 randomized
clinical trials, which included a cumulative sample
of 76,304 patients(49,086 received evolocumab and
27,218 received alirocumab), PCSK9 inhibitors
significantly reduce the risk of myocardial infarction,
coronary artery restenosis, and ischemic stroke.
Furthermore, these agents are well-tolerated and
considered safe drugs while effectively lowering LDL
cholesterol levels [103]. In addition to their significant
beneficial effects on lipid metabolism and the the
reduction of major adverse cardiovascular outcomes
(MACE) [104], PCSK9 inhibitors also demonstrate
significant anti-inflammatory effects. A study from
the European Collaborative Project on Inflammation
and Remodeling of the Vascular Wall in Intravascular
Ultrasound (ATHEROREMO-IVUS) demonstrated
that serum PCSKO9 levels are associated with increased
absolute inflammatory plaque volume and necrotic
core size [105]. A clear correlation was also observed
between serum PCSK9 levels and the concentrations
of pro-inflammatory cytokines, including IL-6,
IL-1B, TNF-a, macrophage colony-stimulating
factor (M-CSF), and high-sensitivity C-reactive
protein (hs-CRP) [106]. It has been established that
PCSK9 enhances the infiltration of inflammatory
monocytes into the vessel wall due to the interaction
of PCSK9-LDLR (less pronounced with LRPS)
with plaques. This interaction directly contributes to
plaque destabilization [107]. PCSK9 itself induces
inflammation and exacerbates  atherosclerosis
independently of the LDL receptor. Research has
shown that PCSK9 worsens atherosclerosis in mice
with a knockout of the LDL receptor gene. Adenylate
cyclase-associated protein 1 (CAP1) serves as the
primary transducer for mediating the inflammatory
actions of PCSK9, including the induction of cytokines,
Toll-like receptor 4, scavenger receptors, and the
lectin-type oxidized low-density lipoprotein receptor
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1 (LOX-1) [108]. Key mediators of this inflammatory
cascade include spleen tyrosine kinase (Syk) and
protein kinase C delta (PKC3), which are activated
following the formation of the PCSK9-CAP1 complex
[109]. In human peripheral blood mononuclear cells,
it has been established that PCSK9 levels positively
correlate with the phosphorylation of Syk, PKCS
and p65 [110]. Thus, the anti-inflammatory effect
of PCSKY inhibition is evident and holds significant
clinical relevance. In discussing drug approaches
targeting PCSKD9, it is important to highlight inclisiran,
a drug based on small interfering RNA (siRNA) [111,
112]. Inclisiran is a double-stranded modified siRNA
linked to N-acetylgalactosamine (GalNAc), which
acts as a ligand for the asialoglycoprotein receptor
expressed by hepatocytes. The drug specifically
binds to the matrix RNA transcribing the sequence
of the gene encoding PCSK9 [113]. By disrupting
the translation of PCSK9 through mRNA cleavage,
inclisiran effectively reduces its production. The
ORION study series [114] provides robust evidence
regarding its hypolipidemic potential, supported by
meta-analyses [115, 116] that confirm its clinical
efficacy in achieving target lipidogram indicators and
reducing adverse cardiovascular outcomes. It is worth
noting that some studies within the ORION series are
still ongoing today.

2) Lipoprotein (a) inhibitors

Lipoprotein (a) or Lp(a), is an independent factor
contributing to both overall and residual risk of
CVD [117, 118]. Individuals with elevated Lp(a)
levels (>125 nmol/L; >50 mg/dL) exhibit increased
activity of arterial inflammation, characterized by
endothelial activation due to oxidized phospholipids
carried by Lp(a). This process leads to the recruitment
of circulating monocytes, resulting in heightened
secretion of chemoattractants and pro-inflammatory
cytokines, increased expression of adhesion
molecules, and enhanced leukocyte migration
through the wvascular wall [119]. Unfortunately,
lifestyle modifications have minimal impact on Lp(a)
levels; therefore, extracorporeal therapies, such as
namely lipoprotein apheresis may be necessary.
This approach is supported by latest American
Heart Association consensus on LP(a) apheresis
published in 2024 [120]. Lp(a) particles can cross the
endothelial barrier, persist in the arterial wall, and
promote the development of atherosclerotic plaques
[121]. The oxidized phospholipids carried by Lp(a)
can trigger macrophage apoptosis and contribute to
the “instability” of atheromas [122]. Additionally,

Lp(a) promotes inflammation within the arterial wall
by increasing monocyte extravasation and endothelial
activation [123].

These effects are mediated through adhesion
molecules such as ICAM-1 and are associated with an
increase in the activity of the enzyme 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatase (PFKFB)-3
induced by Lp(a) [124]. The development of drugs
targeting high Lp(a) levels represents an innovative
approach to lipid-lowering therapy, as elevated Lp(a)
levels are a strong and independent risk factor for
ASCVD. As of 2024, several drugs have emerged
in this category: pelacarsen [125], olpasiran [126],
zerlasiran [127], lepodisiran [128], and muvalaplin
[129]. Notably, clinical trials involving these agents
have generated great interest within the scientific
community, particularly studies such as OCEAN(a)-
DOSE [130], KRAKEN [131], ALPACAR [132],
among others.

3) Antisense oligonucleotides

Volanesorsen and olezarsen are antisense
oligonucleotides targeting apolipoprotein C3 (APOC3)
mRNA and are currently under active investigation
for the treatment of familial chylomicronemia
syndrome [133]. Volanesorsen blocks the synthesis
of apolipoprotein C3 in the nucleus of hepatocytes by
inhibiting APOC3 mRNA. Two main clinical trials
have been conducted with volanesorsen: APPROACH
[134] and its open-label extension (OLE) [135], as well
as the COMPASS trial [136]. Olezarsen represents an
advancement over volanesorsen, as it is conjugated
to N-acetylgalactosamine, an aminosaccharide
that exhibits a strong binding affinity for the
asialoglycoprotein type 1 receptor, thereby enhancing
its targeting to hepatocytes [ 137]. Evidence supporting
the efficacy of olezarsen comes from a double-blind,
placebo-controlled study [138], which demonstrated
that olezarsen reduces levels of apolipoprotein C3,
triacylglycerols, and atherogenic lipoproteins in
patients with moderate hypertriacylglycerolemia who
are at high risk or have established cardiovascular
disease.

4) Bempedoic acid

Bempedoic acid is a long-chain tetramethyl-
substituted ketodiac acid characterized by a linear
molecule structure. It belongs to the family of “rogue”
fatty acids [139].

As a hypolipidemic agent, bempedoic acid
functions as an inhibitor of the enzyme ATP-citrate
lyase, which catalyzes one of the key reactions in
cholesterol synthesis [140]. It is the first drug in its
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class to act by inhibiting adenosine triphosphate citrate
lyase [141]. A significant aspect of bempedoic acid’s
mechanism of action is that its active metabolite is
formed exclusively in the liver, which minimizes the
risk of muscle-related adverse reactions [142]. The
safety and efficacy of long-term use of bempedoic
acid have been evaluated in the CLEAR (Cholesterol
Lowering via BEmpedoic Acid, an ACL-inhibiting
Regimen) program, which encompasses four phase
3 studies: CLEAR Tranquility [143], CLEAR
Harmony [144], CLEAR Wisdom [145], and CLEAR
Serenity [146].

Bempedoic acid promotes the activation of
LDL receptor expression, leading to lower LDL
cholesterol levels, attenuation of atherogenesis,
reduction in hepatocyte lipid levels and body weight,
and improvement in glycemic control [147, 148]. In
this regard, both genetic inhibition of ATP-citrate
lyase (ACLY) in hepatocytes and pharmacological
inhibition with bempedoic acid suppress fatty
acid and cholesterol synthesis while enhancing
fatty acid oxidation without increasing circulating
triacylglycerol levels. Moreover, studies conducted
on murine and human hepatic stellate cells have
demonstrated that bempedoic acid also inhibits liver
fibrosis by targeting pathways involved in collagen
formation [149].

5) Evinacumab

Evinacumab is a monoclonal antibody that targets
angiopoietin-associated peptide 3 (ANGPTL3), a
circulating protein secreted by the liver that regulates
the hydrolysis of very low-density lipoprotein
(VLDL) triglycerides. This drug is typically used
for the treatment of refractory homozygous familial
hypercholesterolemia [150].

6) Lomitapide

Lomitapide lowers cholesterol levels by inhibiting
microsomal triacylglycerol transfer protein (MTP)
[151]. MTP is involved in loading triacylglycerols
onto apolipoprotein B100, which is essential for
VLDL assembly. After being secreted by hepatocytes,
VLDL is converted to LDL. By blocking VLDL
assembly, lomitapide reduces both VLDL release
and VLDL-mediated triacylglycerol secretion,
resulting in lower plasma LDL concentrations [152].
Lomitapide has been approved by the FDA and EMA
for the treatment of adult patients with homozygous
familial hypercholesterolemia as an adjunct to a low-
fat diet and other lipid-lowering therapies, with or
without LDL apheresis [151]. Despite the impressive
therapeutic potential of new drugs, their use is

limited due to the lack of large-scale double-blind
randomized studies, insufficient clinical experience,
and high costs. Consequently, they are considered
reserve therapies and are prescribed in cases where
target lipid profile indicators are not achieved with
the maximum tolerated dose of statins combined with
ezetimibe and/or when there is complete intolerance
to statins [153, 154].

7) Colchicine

In the context of trends in contemporary cardiology,
it is worthwhile to highlight the role of colchicine
in the treatment of atherosclerosis. Colchicine
is a significant medication whose mechanism of
action is linked to its effects on cellular structure
and function. This drug exhibits a biphasic effect
on microtubules; at low concentrations, it inhibits
microtubules growth, while at high concentrations,
it promotes their depolarization [155]. Colchicine
inhibits tubulin polymerization, disrupting the cellular
cytoskeleton and leading to impairment of various
intracellular processes, including mitosis, intracellular
transport, and phagocytosis [156]. In addition,
colchicine inhibits chemotaxis and the adhesion
of neutrophils to inflamed endothelium, including
indirectly through alterations in the expression of VE-
selectin on endothelial cells [157]. Colchicine also
inhibits L-selectin expression, preventing neutrophil
recruitment, and affects neutrophil function by
limiting their extravasation. Furthermore, colchicine
normalizes macrophage activity and inflammasome
functioning [158].Beyond its effect on neutrophils,
colchicine exhibits antithrombotic activity by
reducing leukocyte-platelet aggregation (including
both monocytes and neutrophils) as well as lowering
levels of surface markers associated with platelet
activity, such as P-selectin and PAC-1 (activated GP
Ib/111a) [159].

Thus, the diverse effects of colchicine, including
modulation of the cell cytoskeleton, anti-inflammatory
properties, and antithrombotic activity, determine its
high clinical significance in reducing both overall and
residual cardiovascular risk in atherosclerosis [160].
There is a substantial body of evidence supporting the
use of colchicine in atherosclerosis; notable studies
include COLCOT (COLchicine Cardiovascular
Outcomes) [161], LoDoCo (Low Dose Colchicine)
[162], COVERT-MI (Colchicine for Left Ventricular
Infarct Size Reduction in Acute Myocardial Infarction)
[163], and CONVINCE (Colchicine for prevention
of Vascular Inflammation in Non-CardioEmbolic
Stroke) [164].

132 BlonneteHb cMbupckoin MeguuuHbl. 2025; 24 (2): 124-140



Reviews and lectures

8) Biologically active compounds in contemporary
lipidology

In parallel with conventional drug therapy,
the role of various biologically active substances
with hypolipidemic activity is being actively
studied. Notable examples include chitosan, ursolic
acid, nattokinase, spermidine, taurine, grape and
pomegranate seed extracts, as well as many other
naturally derived compounds that are positioned
as atheroprotective and hypolipidemic substances
[165, 166]. This topic is traditionally considered
controversial. Unfortunately, the available data on
the effectiveness and safety of these compounds are
limited, difficult to compare, and sometimes even
contradictory. Nonetheless, this does not exclude their
potential benefits, which have been supported by large
placebo-controlled, double-blind randomized studies.
For example, the COSMOS (COcoa Supplements and
Multivitamin Outcomes Study) study demonstrated
a 27% reduction in cardiovascular mortality rates
associated with cocoa flavonoids [167]. Additionally,
a network meta-analysis encompassing 131 studies
with a total sample size of 13,062 patients compared
the effectiveness of various dietary supplements such
as artichoke, berberine, bergamot, garlic, green tea
extract, plant sterols/stanols, policosanols, red yeast
rice, silymarin, and spirulina. This analysis found
that bergamot and red yeast rice extracts exhibited
the most significant atheroprotective effect [168]. It is
important to note that in the vast majority of cases,
while the positive effects of these compounds are
statistically significant compared to placebo groups,
they are not comparable to those of statins. The
interpretation of data from existing studies is further
complicated by the high variability in the biological
properties of natural raw materials. These properties
can depend on factors such as the life cycle conditions
of the producing organisms and the conditions
under which they are harvested, processed, and
stored. Therefore, caution should be exercised when
interpreting these findings. However, the significance
of these results should not be underestimated; they
should be considered in clinical practice, particularly,
when developing personalized dietary interventions
that align with clearly defined treatment goals.

CONCLUSION

Our understanding of atherosclerosis has evolved
significantly beyond the concept of a mere lipid
metabolism  disorder.  Contemporary  research
highlights the pivotal role of inflammation throughout

the entire atherosclerotic process. Notably, both
innate and adaptive immune responses are activated
in atherosclerosis, initiating inflammatory reactions
that occur both locally and systemically, manifesting
as chronic low-grade inflammation. Consequently,
circulating cytokines not only serve as indicators
of heightened cardiovascular risk but also actively
contribute to the progression and destabilization of
atherosclerotic plaques. Understanding the role of
inflammation in the pathogenesis of atherosclerosis
presents significant clinical implications. The pursuit of
identifying a molecular signature of the inflammatory
cascade in atherosclerotic cardiovascular disease
(aCVD) may facilitate the development of targeted
anti-inflammatory strategies in the future. When
combined with personalized medicine approaches,
this advancement could significantly enhance the
capabilities of preventive cardiology.
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