Orexin system and pathogenesis of sleep-wake cycle disturbances in narcolepsy
https://doi.org/10.20538/1682-0363-2017-4-7-15
Abstract
Sleep is the one of the most important vital functions of the body. The study of the primary mechanisms that result in disturbance of the sleep-wake cycle is a priority of modern medical science. It is known that the orexin neurons of the hypothalamus, which send projections to all waking centers, play a leading role in initiating and maintaining this state. Insufficiency of the function of the orexinergic system of the hypothalamus leads to disturbances in the sleep-wake cycle and the development of the severe diseases of narcolepsy and cataplexy. The presented review is devoted to the investigation of possible mechanisms of development of pathological changes in the orexin-containing neurons functions and the diseases caused by them.
About the Authors
Yu. V. GavrilovRussian Federation
PhD, Senior Researcher, Department of General Pathology and Pathological Physiology
12, Academician Pavlova Str., St.-Petersburg, 197376
K. Z. Derevtsova
Russian Federation
PhD, Senior Researcher, Department of General Pathology and Pathological Physiology
12, Academician Pavlova Str., St.-Petersburg, 197376
H. A. Korneva
Russian Federation
Academician of the Russian Academy Sciences, DM, Chief Senior Researcher, Department of General Pathology and Pathological Physiology
12, Academician Pavlova Str., St.-Petersburg, 197376
Professor of Pathophysiology Department
7–9, Universitetskay Nab., St.-Petersburg, 199034
References
1. Eriksson K.S., Sergeeva O., Brown R.E., and Haas H.L. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus // J. Neurosci. 2001; 21: 9273–9279. DOI: 10.1111/j.1460-9568.2004.03243.x.
2. Marcus J.N., Aschkenasi C.J., Lee C.E., Chemelli R.M., Saper C.B., Yanagisawa M. and Elmquist J.K. Differential expression of orexin receptors 1 and 2 in the rat brain // J. Comp. Neurol. 2001; 435: 6–25. DOI: 10.1002/cne.1190.
3. Trivedi P., Yu H., MacNeil D.J., Van der Ploeg L.H. and Guan X.M. Distribution of orexin receptor mRNA in the rat brain // FEBS Lett. 1998; 438: 71–75. DOI: 10.1016/ S0014-5793(98)01266-6.
4. Pace-Schott E.F., Hobson J.A. The neurobiology of sleep: genetics, cellular physiology and subcortical networks // Nat. Rev. Neurosci. 2002; 3: 591–605. DOI: 10.1038/ nrn895.
5. Huang Z.L., Qu W.M., Li W.D., Mochizuki T., Eguchi N., Watanabe T., Urade Y. and Hayaishi O. Arousal effect of orexin A depends on activation of the histaminergic system // Proc. Natl. Acad. Sci. USA. 2001; 98: 9965– 9970. DOI: 10.1073/pnas.181330998.
6. Mignot E. A commentary on the neurobiology of the hypocretin/orexin system // Neuropsychopharmacology. 2001 Nov; 25 (5 Suppl.): S5–13. DOI: 10.1016/S0893- 133X(01)00316-5.
7. Abad V.C., Guilleminault C. New developments in the management of narcolepsy // Nat. Sci. Sleep. 2017, Mar. 3; 9: 39–57. DOI: 10.2147/NSS.S103467.
8. Kousaku Ohno and Takeshi Sakurai. Orexin neuronal circuitry: Role in the regulation of sleep and wakefulness // Frontiers in Neuroendocrinology. 2008; 29 (1): 70–87. https://doi.org/10.1007/978-3-319-23078-8_4.
9. Thomas Chacko Thannickal, A decade of hypocretin/ orexin: Accomplishments in sleep medicine // Sleep Medicine Reviews. 2009; 13 (1): 5–8. http://dx.doi. org/10.1016/j.smrv.2008.09.004.
10. Davis J.F., Choi D.L., Benoit S.C. (2011). 24. Orexigenic Hypothalamic Peptides Behavior and Feeding – 24.5 Orexin. In Preedy V.R., Watson R.R., Martin C.R. Handbook of Behavior, Food and Nutrition. Springer: 361–2. https://doi.org/10.1007/978-0-387-92271-3_24.
11. Lin L., Hungs M., Mignot E. Narcolepsy and the HLA region // J. Neuroimmunol. 2001; Jul. 2; 117 (1–2): 9–20. https://doi.org/10.1016/s0165-5728(01)00333-2.
12. Dement W.C., Carskadon M.A., Guilleminault C., Zarcone V.P. Narcolepsy // Diagnosis and treatment. Prim Care. 1976; Dec.; 3 (4): 609–23.
13. Mignot E., Taheri S., Nishino S. Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders // Nature Neuroscience. 2002; 5: 1071–1075. DOI: 10.1038/nn944.
14. Mignot E., Lammers G.J., Ripley B., Okun M., Nevsimalova S., Overeem S., Vankova J., Black J., Harsh J., Bassetti C., Schrader H., Nishino S. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias // Arch. Neurol. 2002; Oct.; 59 (10): 1553–1562. DOI: 10.1001/archneur.59.10.1553.
15. Wurtman R.J. Narcolepsy and the hypocretins // Metabolism. 2006; Oct.; 55(10 Suppl. 2): S36–9. DOI: http:// dx.doi.org/10.1016/j.metabol.2006.07.011.
16. Gvilia I. Underlying brain mechanisms that regulate sleep-wakefulness cycles // Int. Rev. Neurobiol. 2010; 93: 1–21. https://doi.org/10.1016/S0074-7742(10)93001-8.
17. Taheri S., Zeitzer J.M., Mignot E. The role of hypocretins (orexins) in sleep regulation and narcolepsy // Annu Rev. Neurosci. 2002; 25: 283–313. Epub. 2002; Mar; 20. https://doi.org/10.1146/annurev.neuro.25.112701.142826.
18. Mieda M. The Roles of Orexins in Sleep/Wake Regulation // Neurosci Res. 2017; May; 16: S0168–0102 (16) 30320-0. https://doi.org/10.1016/j.neures.2017.03.015.
19. Hara J., Beuckmann C.T., Nambu T., Willie J.T., Chemelli R.M., Sinton C.M., Sugiyama F., Yagami K., Goto K., Yanagisawa M., Sakurai T. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity // Neuron. 2001; May; 30 (2): 345–354. http:// dx.doi.org/10.1016/S0896-6273(01)00293-8.
20. Won C., Mahmoudi M., Qin L., Purvis T., Mathur A., Mohsenin V. The impact of gender on timeliness of narcolepsy diagnosis // J. Clin. Sleep. Med. 2014; Jan. 15; 10 (1): 89–95. http://dx.doi.org/10.5664/jcsm.3370.
21. Chemelli R.M., Willie J.T., Sinton C.M., Elmquist J.K., Scammell T., Lee C., Richardson J.A., Williams S.C., Xiong Y., Kisanuki Y., Fitch T.E., Nakazato M., Hammer R.E., Saper C.B., and Yanagisawa M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation // Cell. 1999; 98: 437–451. http://dx.doi. org/10.1016/S0092-8674(00)81973-X.
22. Mochizuki T., Arrigoni E., Marcus J.N., Clark E.L., Yamamoto M., Honer M., Borroni E., Lowell B.B., Elmquist J.K., Scammell T.E. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice // Proc. Natl. Acad. Sci. USA. 2011; Mar. 15; 108 (11): 4471–6. DOI: 10.1073/pnas.1012456108.
23. Hara J., Yanagisawa M., Sakurai T. Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions // Neurosci Lett. 2005; Jun. 3; 380 (3): 239–422. https://doi.org/10.1016/j. neulet.2005.01.046.
24. Chou T.C., Lee C.E., Lu J., Elmquist J.K., Hara J., Willie J.T., Beuckmann C.T.., Chemelli R.M., Sakurai T., Yanagisawa M., Saper C.B., Scammell T.E. Orexin (hypocretin) neurons contain dynorphin // J. Neurosci. 2001; Oct. 1; 21 (19): RC168.
25. Thannickal T.C., Nienhuis R., Siegel J.M. Localized Loss of Hypocretin (Orexin) Cells in Narcolepsy Without Cataplexy // Sleep. 2009; 32 (8): 993–998. https://doi. org/10.1093/sleep/32.8.993.
26. Shainidze K.Z., Novikova N.S. Immunoreactivity of Hypothalamic Orexin-Containing Neurons in Rats in Movement Restriction and Cooling // Neuroscience and Behavioral Physiology. 2011; 41 (2): 213–221. Available at: http://dx.doi.org/10.1007/s11055-011-9402-0.
27. Perekrest S.V., Shainidze K.Z., Loskutov Y.V., Abramova T.V., Novikova N.S., Korneva E.A. Immunoreactivity of Orexin-Containing Business in the Hypothalamus and the Level of Expression of the Preproorexin Gene in These Cells after Administration of Lipopolysaccharide // Neuroscience and Behavioral Physiology. 2013; 43 (2): 256–260. DOI:10.1007/s11055-013-9725-0.
28. Estabrooke I.V, McCarthy M.T, Ko E. et al. Fos expression in orexin neurons varies with behavioral state // J. Neurosci. 2001; 21: 1656–1662.
29. Kurose T., Ueta Y., Yamamoto Y. et al. Effects of restricted feeding on the activity of hypothalamic orexin (OX)-A containing neurons and OX2 receptor mRNA level in the paraventricular nucleus of rats // Regul. Pept. 2002. 104: 145–151. doi:10.1016/s0167-0115(01)00340-8.
30. Moriguchi T., Sakurai T., Nambu T. et al. Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia // Neurosci Lett. 1999; 264: 101–104. doi:10.1016/s0304-3940(99)00177-9.
31. Mignot E., Hayduk R., Black J., Grumet F.C., Guilleminault C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients // Sleep. 1997; Nov.; 20 (11): 1012–1020. DOI:10.1093/sleep/20.11.1012.
32. Pintwala S., Peever J. Circuit mechanisms of sleepiness and cataplexy in narcolepsy // Curr. Opin. Neurobiol. 2017 Mar. 23; 44: 50–58. DOI:10.1016/j.conb.2017.02.010.
33. Valko P.O., Gavrilov Y.V., Yamamoto M., Reddy H., Haybaeck J., Mignot E., Baumann C.R., Scammell T.E. Increase of histaminergic tuberomammillary neurons in narcolepsy // Ann. Neurol. 2013; Dec.; 74 (6): 794–804. doi:10.1002/ana.24019
34. Gavrilov Y.V., Ellison B.A., Yamamoto M., Reddy H., Haybaeck J., Mignot E., Baumann C.R., Scammell T.E., Valko P.O. Disrupted Sleep in Narcolepsy: Exploring the Integrity of Galanin Neurons in the Ventrolateral Preoptic Area // Sleep. 2016; May 1; 39 (5): 1059–1062. doi:10.5665/sleep.5754
35. Billiard M. Narcolepsy. Clinical features and aetiology // Ann. Clin. Res.1985; 17 (5): 220–226.
36. Mignot E. Genetic and familial aspects of narcolepsy // Neurology. 1998; 50 (2 Suppl. 1): S16–22. DOI: 10.1212/ wnl.50.2_suppl_1.s16.
37. Lin L., Mignot E. Human leukocyte antigen and narcolepsy: present status and relationship with familial history and hypocretin deficiency. In: Bassetti C., Billiard M., Mignot E., editors. Narcolepsy and hypersomnia. New York: Informa Health Care. 2007; 220: 411–426.
38. Gill A.W. Idiopatic and traumatic narcolepsy // Lancet. 1941; 1: 474. DOI: 10.1016/s0140-6736(00)61098-x.
39. Guilleminault C., Faull K.F., Miles L., van den Hoed J. Posttraumatic excessive daytime sleepiness: a review of 20 patients // Neurology. 1983; 33 (12): 1584–1589. DOI: 10.1212/wnl.33.12.1584.
40. Lankford D.A., Wellman J.J., O’Hara C. Posttraumatic narcolepsy in mild to moderate closed head injury // Sleep. 1994; 17 (8 Suppl.): S25–8. DOI: 10.1093/sleep/17. suppl_8.s25
41. Honda Y. A monozygotic pair completely discordant for narcolepsy, with sleep deprivation as a possible precipitating factor // Sleep. Biol. Rhythm. 2003; 1: 147–149. DOI: 10.1046/j.1446-9235.2003.00027.x.
42. Orellana C., Villemin E., Tafti M., Carlander B., Besset A., Billiard M. Life events in the year preceding the onset of narcolepsy // Sleep. 1994; 17 (8 Suppl.): S50–3. DOI: 10.1093/sleep/17.suppl_8.s50.
43. Roth B. Narcolepsy and hypersomnia. Basel: Karger; 1980. DOI: 10.1159/000386922.
44. Mueller-Eckhardt G., Meier-Ewart K., Schiefer H.G. Is there an infectious origin of narcolepsy? // Lancet. 1990; 335 (8686): 424. DOI: 10.1016/0140-6736(90)90270-f.
45. Aran A., Lin L., Nevsimalova S. et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset // Sleep. 2009; 32 (8): 979–983. DOI: 10.1093/ sleep/32.8.979.
46. Koepsell T.D., Longstreth W.T., Ton T.G. Medical exposures in youth and the frequency of narcolepsy with cataplexy: a population-based case-control study in genetically predisposed people // J. Sleep. Res. 2010; 19 (1 Pt 1): 80–86. DOI: 10.1111/j.1365-2869.2009.00756.x.
47. Flu vaccine may cause narcolepsy [Электронный ресурс]. ScienceNordic. 2012, September 17. http://sciencenordic.com/flu-vaccine-may-cause-narcolepsy.
48. Bomfim I.L., Lamb F., Fink K., Szakács A., Silveira A., Franzén L., Azhary V., Maeurer M., Feltelius N., Darin N., Hallböök T., Arnheim-Dahlström L., Kockum I., Olsson T. The immunogenetics of narcolepsy associated with A(H1N1)pdm09 vaccination (Pandemrix) supports a potent gene-environment interaction // Genes Immun. 2017 Mar; 18 (2): 75–81. DOI: 10.1038/gene.2017.1.
49. Peyron C., Faraco J., Rogers W. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains // Nat. Med. 2000; 6 (9): 991–997.
50. Hungs M., Lin L., Okun M., Mignot E. Polymorphisms in the vicinity of the hypocretin/orexin are not associated with human narcolepsy // Neurology. 2001; 57 (10): 1893–1895. DOI: 10.1212/wnl.57.10.1893.
51. Olafsdottir B.R., Rye D.B., Scammell T.E., Matheson J.K., Stefansson K., Gulcher J.R. Polymorphisms in hypocretin/orexin pathway genes and narcolepsy // Neurology. 2001; 57 (10): 1896–1899. DOI: 10.1212/wnl.57.10.1896.
52. Okun M.L., Lin L., Pelin Z., Hong S., Mignot E. Clinical aspects of narcolepsy-cataplexy across ethnic groups // Sleep. 2002; Feb. 1; 25 (1): 27–35. DOI: 10.1093/ sleep/25.1.27.
53. Chemelli R.M., Willie J.T., Sinton C.M., Elmquist J.K., Scammell T., Lee C., Richardson J.A., Williams S.C., Xiong Y., Kisanuki Y., Fitch T.E., Nakazato M., Hammer R.E., Saper C.B., and Yanagisawa M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation // Cell. 1999; 98: 437–451. DOI: 10.1016/s0092- 8674(00)81973-x.
54. Scammell T.E., Estabrooke I.V., McCarthy M.T., Chemelli R.M., Yanagisawa M., Miller M.S. and Saper C.B. Hypothalamic arousal regions are activated during modafinil-induced wakefulness // J. Neurosci. 2000; 20: 8620-8628.
55. Honda Y., Asake A., Tanaka Y., Juji T. Discrimination of narcolepsy by using genetic markers and HLA // Sleep Res. 1983; 12: 254.
56. Juji T., Satake M., Honda Y., Doi Y. HLA antigens in Japanese patients with narcolepsy. All the patients were DR2 positive // Tissue Antigens. 1984; 24: 316–319. doi:10.1111/j.1399-0039.1984.tb02144.x.
57. Mignot E., Hayduk R., Black J., Grumet F.C., Guilleminault C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients // Sleep. 1997; 20 (11): 1012– 1020. DOI: 10.1093/sleep/20.11.1012.
58. Thannickal T.C., Lai Y.Y., Siegel J.M. Hypocretin (orexin) cell loss in Parkinson’s disease // Brain. 2007; 130 (Pt. 6): 1586–1595. DOI: 10.1093/brain/awm097.
59. Fronczek R., Overeem S., Lee S.Y. et al. Hypocretin (orexin) loss in Parkinson’s disease // Brain. 2007; 130 (Pt. 6): 1577–1585. DOI: 10.1093/brain/awm090.
60. Aziz A., Fronczek R., Maat-Schieman M. et al. Hypocretin and melanin-concentrating hormone in patients with Huntington disease // Brain Pathol. 2008; 18 (4): 474–483. DOI: 10.1111/j.1750-3639.2008.00135.x.
61. Bourgin P., Zeitzer J.M., Mignot E. CSF hypocretin-1 assessment in sleep and neurological disorders // Lancet. Neurol. 2008; 7 (7): 649–662. DOI: 10.1016/s1474- 4422(08)70140-6.
62. Honda M., Arai T., Fukuzawa M. et al. Absence of ubiquitinated inclusions in hypocretin neurons of patients with narcolepsy // Neurology. 2009; 73 (7): 511–517. DOI: 10.1212/wnl.0b013e3181b2a6af.
63. Dauvilliers Y., Gosselin A., Paquet J., Touchon J., Billiard M., Montplaisir J. Effect of age on MSLT results in patients with narcolepsy-cataplexy // Neurology. 2004; 62 (1): 46–50. DOI: 10.1212/01.wnl.0000101725.34089.1e.
64. Mignot E. A hundred years of narcolepsy research // Arch. Ital. Biol. 2001; 139 (3): 207–220. DOI: https:// doi.org/10.4449/aib.v139i3.500.
65. Moreira F., Pedrazzoli M., Dos Santos Coelho F.M. et al. Clock gene polymorphisms and narcolepsy in positive and negative HLA-DQB1*0602 patients // Brain. Res. Mol. Brain. Res. 2005; 140 (1–2): 150–154. DOI: 10.1016/j.molbrainres.2005.07.015.
66. Adriano Fontana, Heidemarie Gast, Thomas Birchler Narcolepsy: Autoimmunity or Secondary to Infection? // Narcolepsy. 2011; 1: 19–26. DOI: 10.1007/978-1-4419- 8390-9_2.
Review
For citations:
Gavrilov Yu.V., Derevtsova K.Z., Korneva H.A. Orexin system and pathogenesis of sleep-wake cycle disturbances in narcolepsy. Bulletin of Siberian Medicine. 2017;16(4):7-15. (In Russ.) https://doi.org/10.20538/1682-0363-2017-4-7-15