The regulation of epithelial cells volume in norm and pathology
https://doi.org/10.20538/1682-0363-2017-4-42-60
Abstract
The ability to regulate volume in response to changes in intracellular and extracellular osmolarity is one of the fundamental cell functions. Cell volume changes stimulate a variety of intracellular signaling cascades that activate protective and adaptive mechanisms. In general, the regulation of volume occurs due to the transport of osmolytes, which results in the restoration of the intracellular water volume and the normalization of cellular functions. In this review we focused on the physiological significance of regulatory volume decrease (RVD) and regulatory volume increase (RVI) in response to fluctuations of extra- and intracellular osmolarity in the context of epithelial cells.
About the Authors
O. O. PonomarchukRussian Federation
Faculty of Biology
1/12, Leninskie Gory, 119991, Moscow
900, Tour Viger, rue St-Denis, Montreal, Quebec, H2X 0A9
G. V. Маximov
Russian Federation
Faculty of Biology
1/12, Leninskie Gory, 119991, Moscow
S. N. Оrlov
Russian Federation
DM, Professor, Faculty of Biology
1/12, Leninskie Gory, 119991, Moscow
References
1. Mongin A.A. and Orlov S.N. Mechanisms of cell volume regulation and possible nature of the cell volume sensor // Pathophysiology. 2001; 8 (2): 77–88.
2. Macknight A.D. and Leaf A. Regulation of cellular volume in Membrane Physiology. Springer, 1987: 311–328.
3. Lang, F. et al. Functional significance of cell volume regulatory mechanisms // Physiological reviews. 1998; 78 (1): 247–306.
4. Murao H. et al. Cell shrinkage evoked by Ca2+‐free solution in rat alveolar type II cells: Ca2+ regulation of Na+–H+ exchange // Experimental physiology. 2005; 90 (2): 203–213.
5. Hosoi K. et al. Terbutaline-induced triphasic changes in volume of rat alveolar type II cells: the role of cAMP // The Japanese journal of physiology. 2002; 52 (6): 561– 572.
6. Hosoi K. et al., Delayed shrinkage triggered by the Na+– K+ pump in terbutaline‐stimulated rat alveolar type II cells // Experimental physiology. 2004; 89 (4): 373–385.
7. Hoffmann E.K., Lambert I.H. and Pedersen S.F. Physiology of cell volume regulation in vertebrates // Physiol Rev. 2009; 89 (1): 193–277.
8. MacLeod R. and Hamilton J. Ca 2+/calmodulin kinase II and decreases in intracellular pH are required to activate K+ channels after substantial swelling in villus epithelial cells // Journal of Membrane Biology. 1999; 172 (1): 59–66.
9. Fernández-Fernández J.M. et al. Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line // American Journal of Physiology-Cell Physiology. 2002; 283 (6): C1705–C1714.
10. Vázquez E., Nobles M. and Valverde M.A. Defective regulatory volume decrease in human cystic fibrosis tracheal cells because of altered regulation of intermediate conductance Ca2+-dependent potassium channels // Proceedings of the National Academy of Sciences. 2001; 98 (9): 5329–5334.
11. Wu X. et al. Regulatory volume decrease by SV40- transformed rabbit corneal epithelial cells requires ryanodine-sensitive Ca2+-induced Ca2+ release // Journal of Membrane Biology. 1997; 158 (2): 127–136.
12. Harron S.A. et al. Volume regulation in the human airway epithelial cell line Calu-3 // Canadian journal of physiology and pharmacology. 2009; 87 (5): 337–346.
13. Jentsch T.J. VRACs and other ion channels and transporters in the regulation of cell volume and beyond // Nature Reviews Molecular Cell Biology. 2016; 17 (5): 293–307.
14. Hazama A. and Okada Y. Ca2+ sensitivity of volume‐ regulatory K+ and Cl‐channels in cultured human epithelial cells // The Journal of Physiology. 1988; 402 (1): 687–702.
15. Hoffmann E.K., Holm N.B. and Lambert I.H. Functions of volume‐sensitive and calcium‐activated chloride channels // IUBMB life. 2014; 66 (4): 257–267.
16. Mummery J.L., Killey J. and Linsdell P. Expression of the chloride channel CLC-K in human airway epithelial cells // Canadian journal of physiology and pharmacology. 2005; 83 (12): 1123–1128.
17. Almaça J. et al. TMEM16 proteins produce volumeregulated chloride currents that are reduced in mice lacking TMEM16A // Journal of Biological Chemistry. 2009; 284 (42): 28571–28578.
18. Xie C. et al. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia // The FASEB Journal. 2016; 30 (4): 1579– 1589.
19. Missan S. et al. Contribution of KCNQ1 to the regulatory volume decrease in the human mammary epithelial cell line MCF-7 // American Journal of Physiology-Cell Physiology. 2007; 293 (3): C1010–C1019.
20. Lan W.Z., Wang P.Y. and C.E. Hill, Modulation of hepatocellular swelling-activated K+ currents by phosphoinositide pathway-dependent protein kinase C // American Journal of Physiology-Cell Physiology. 2006; 291 (1): C93–C103.
21. Dube L., Parent L. and Sauve R. Hypotonic shock activates a maxi K+ channel in primary cultured proximal tubule cells // American Journal of Physiology-Renal Physiology. 1990; 259 (2): F348–F356.
22. Urbach V. et al. Mechanosensitive calcium entry and mobilization in renal A6 cells // The Journal of membrane biology. 1999; 168 (1): 29–37.
23. Wang J., S. Morishima and Y. Okada. IK channels are involved in the regulatory volume decrease in human epithelial cells // American Journal of Physiology-Cell Physiology. 2003; 284 (1): C77–C84.
24. Lauf P.K. et al., Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells // American Journal of Physiology-Cell Physiology. 2008; 294 (3): C820–C832.
25. Roman R. et al. Molecular characterization of volumesensitive SKCa channels in human liver cell lines // American Journal of Physiology-Gastrointestinal and Liver Physiology. 2002; 282 (1): G116–G122.
26. Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters // Physiological reviews. 2005; 85 (2): 423–493.
27. Hebert S.C., Mount D.B. and Gamba G. Molecular physiology of cation-coupled Cl− cotransport: the SLC12 family // Pflügers Archiv. 2004; 447 (5): 580–593.
28. Mercado A. et al. Functional comparison of the K+-Cl− cotransporters KCC1 and KCC4 // Journal of Biological Chemistry. 2000; 275 (39): 30326–30334.
29. Race J.E. et al. Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter // American Journal of Physiology-Cell Physiology. 1999; 277 (6): C1210–C1219.
30. Capó-Aponte J.E., Iserovich P. and Reinach P. Characterization of regulatory volume behavior by fluorescence quenching in human corneal epithelial cells // Journal of Membrane Biology. 2005; 207 (1): 11–22.
31. Strange K., Emma F. and P.S. Jackson. Cellular and molecular physiology of volume-sensitive anion channels // American Journal of Physiology-Cell Physiology. 1996; 270 (3): C711–C730.
32. Kirk K. and Strange K. Functional properties and physiological roles of organic solute channels // Annual Review of Physiology. 1998; 60 (1): 719–739.
33. Holm J.B., Grygorczyk R. and Lambert I.H. Volumesensitive release of organic osmolytes in the human lung epithelial cell line A549: role of the 5-lipoxygenase // American Journal of Physiology-Cell Physiology. 2013; 305 (1): C48–C60.
34. Di Ciano-Oliveira C. et al. Is myosin light-chain phosphorylation a regulatory signal for the osmotic activation of the Na+-K+-2Cl− cotransporter? // American Journal of Physiology-Cell Physiology. 2005; 289 (1): C68–C81.
35. Russell J.M. Sodium-potassium-chloride cotransport // Physiological Reviews. 2000; 80 (1): 211–276.
36. O’Neill, W.C., Physiological significance of volume-regulatory transporters // American Journal of Physiology-Cell Physiology. 1999; 276 (5): C995– C1011.
37. Bookstein C. et al. Characterization of the rat Na+/ H+ exchanger isoform NHE4 and localization in rat hippocampus // American Journal of Physiology-Cell Physiology. 1996; 271 (5): C1629–C1638.
38. Bookstein, C. et al. A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity // Journal of Biological Chemistry. 1994; 269: 29704–29704.
39. Good D.W., Di Mari J.F. and B.A. Watts. Hyposmolality stimulates Na+/H+ exchange and HCO3− absorption in thick ascending limb via PI 3-kinase // American Journal of Physiology-Cell Physiology. 2000; 279 (5): C1443– C1454.
40. Soleimani M. et al. Effect of high osmolality on Na+/H+ exchange in renal proximal tubule cells // Journal of Biological Chemistry. 1994; 269 (22): 15613–15618.
41. Alexander R.T. et al. Membrane curvature alters the activation kinetics of the epithelial Na+/H+ exchanger, NHE3 // Journal of Biological Chemistr. 2007; 282 (10): 7376–7384.
42. Wehner, F. and H. Tinel, Role of Na+ conductance, Na+‐H+ exchange, and Na+‐K+‐2Cl− symport in the regulatory volume increase of rat hepatocytes // The Journal of Physiology. 1998; 506 (1): 127–142.
43. Pedersen S. et al. Physiology and pathophysiology of Na+/H+ exchange and Na+-K+-2Cl− cotransport in the heart, brain, and blood // American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2006; 291 (1): R1–R25.
44. Haberich F., Aziz O. and Nowacki P. Über einen osmoreceptorisch tätigen Mechanismus in der Leber // Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere. 1965; 285 (1): 73–89.
45. Beck F.X., Dörge A. and Thurau K. Cellular osmoregulation in renal medulla // Kidney and Blood Pressure Research. 1988; 11 (3–5): 174–186.
46. Bierens J.J. et al. Physiology of drowning: a review // Physiology. 2016; 31 (2): 147–166.
47. De Boer J. et al. The effects of aspirated and swallowed water in drowning // Anesthesiology. 1970; 32 (1): 51–59.
48. Lambert I., Hoffmann E. and Pedersen S. Cell volume regulation: physiology and pathophysiology // Acta physiologica. 2008; 194 (4): 255–282.
49. Burg M.B., Kwon E.D. and Kültz D. Osmotic regulation of gene expression // The FASEB Journal. 1996; 10 (14): 1598–1606.
50. Burg M.B. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells // Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 1994; 268 (2): 171–175.
51. Beck F. et al. Intra-and extracellular element concentrations of rat renal papilla in antidiuresis // Kidney international. 1984; 25 (2): 397–403.
52. Pedersen S.F., Hoffmann E.K. and I. Novak. Cell volume regulation in epithelial physiology and cancer // Frontiers in physiology. 2013. 4: 233.
53. Shiima‐Kinoshita C. et al. β2‐adrenergic regulation of ciliary beat frequency in rat bronchiolar epithelium: potentiation by isosmotic cell shrinkage // The Journal of physiology. 2004; 554 (2): 403–416.
54. Reuss L. and Cotton C.U. Volume regulation in epithelia: transcellular transport and cross-talk // Cellular and Molecular Physiology of Cell Volume Regulation. 1994: 31–47.
55. Lang F., Messner G. and Rehwald W. Electrophysiology of sodium-coupled transport in proximal renal tubules // American Journal of Physiology-Renal Physiology. 1986; 250 (6): F953–F962.
56. Harvey B.J. Crosstalk and epithelial ion transport. Current opinion in nephrology and hypertension. 1994; 3 (5): 523–528.
57. Schultz S. and Dubinsky W. Sodium absorption, volume control and potassium channels: in tribute to a great biologist // Journal of Membrane Biology. 2001; 184 (3): 255–261.
58. Furlong T.J. and Spring K.R. Mechanisms underlying volume regulatory decrease by Necturus gallbladder epithelium // American Journal of Physiology-Cell Physiology. 1990; 258 (6): C1016–C1024.
59. Breton S. et al. Cell volume increases of physiologic amplitude activate basolateral K and CI conductances in the rabbit proximal convoluted tubule // Journal of the American Society of Nephrology. 1996; 7 (10): 2072–2087.
60. Bachmann O. et al. Basolateral ion transporters involved in colonic epithelial electrolyte absorption anion secretion and cellular homeostasis // Acta physiologica. 2011; 201(1): 33–46.
61. Verkman A., Song Y. andThiagarajah J.R. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease // American Journal of Physiology-Cell Physiology. 2003; 284 (1): C2–C15.
62. Greger R. et al. The Na+ 2Cl–K+ cotransporter in the rectal gland of Squalus acanthias is activated by cell shrinkage // Pflügers Archiv European Journal of Physiology. 1999; 438 (2): 165–176.
63. Foskett J.K., Wong M.M. and Robertson M.A. Isosmotic modulation of cell volume and intracellular ion activities during stimulation of single exocrine cells // Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 1994; 268 (2): 104–110.
64. Wangemann P. Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells // Hearing research. 1995; 90 (1): 149–157.
65. Dissing S. et al. Inhibitory effects of amitriptyline on the stimulation-induced Ca2+ increase in parotid acini // European journal of pharmacology. 1990; 177 (1–2): 43–54.
66. Sun A.M. and Hebert S.C. Volume regulation in renal medullary nephron segments // Cellular and Molecular Physiology of Cell Volume Regulation, 1993: 49.
67. Ussing H. and Eskesen K. Mechanism of isotonic water transport in glands // Acta Physiologica. 1989; 136 (3): 443–454.
68. Hoffmann E.K. and Ussing H.H. Membrane mechanisms in volume regulation in vertebrate cells and epithelia in Membrane transport in biology. Springer, 1992: 317–399.
69. Nedergaard S., Larsen E.H. and Ussing H.H. Sodium recirculation and isotonic transport in toad small intestine // The Journal of membrane biology. 1999; 168 (3): 241–251.
70. Larsen E.H. and Møbjerg N. Na+ recirculation and isosmotic transport // The Journal of membrane biology. 2006; 212 (1): 1–15.
71. Larsen E.H., Sørensen J.B. and Sørensen J.N. Analysis of the sodium recirculation theory of solute‐coupled water transport in small intestine // The Journal of physiology. 2002; 542 (1): 33–50.
72. Wehner F. et al. Cell volume regulation: osmolytes, osmolyte transport, and signal transduction, in Reviews of physiology, biochemistry and pharmacology. Springer, 2003: 80.
73. Häussinger D. et al. Involvement of microtubules in the swelling-induced stimulation of transcellular taurocholate transport in perfused rat liver // Biochemical Journal. 1993; 291 (2): 355–360.
74. Wettstein M., Noe B. and Häussinger D. Metabolism of cysteinyl leukotrienes in the perfused rat liver: the influence of endotoxin pretreatment and the cellular hydration state // Hepatology. 1995; 22 (1): 235–240.
75. Gillin A.G., Star R.A. and Sands J.M. Osmolarity-stimulated urea transport in rat terminal IMCD: role of intracellular calcium // American Journal of Physiology-Renal Physiology.1993; 265 (2): F272–F277.
76. Green R.B. et al. Hyperosmolality inhibits sodium absorption and chloride secretion in mIMCD-K2 cells // American Journal of Physiology-Renal Physiology. 1996; 271 (6): F1248–F1254.
77. Nakahari T. et al. Osmotic flow transients during acetylcholine stimulation in the perfused rat submandibular gland // Experimental physiology. 1997; 82 (1): 55–70.
78. Gao Y. and Vanhoutte P.M. Hypotonic solutions induce epithelium-dependent relaxation of isolated canine bronchi // Lung. 1992; 170 (6): p. 339–347.
79. Lang F. et al. Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death, in Mechanisms and Significance of Cell Volume Regulation. Karger Publishers, 2006: 142–160.
80. Needham D. Possible role of cell cycle-dependent morphology, geometry, and mechanical properties in tumor cell metastasis // Cell Biochemistry and Biophysics. 1991; 18 (2): 99–121. H.
81. Takahashi A., Yamaguchi H. and Miyamoto. Change in K+ current of HeLa cells with progression of the cell cycle studied by patch-clamp technique // American Journal of Physiology-Cell Physiology. 1993; 265 (2): 328–336.
82. Ritter M. and Wöll Е. Modification of cellular ion transport by the Ha-ras oncogene: Steps towards malignant transformation // Cellular Physiology and Biochemistry. 1996; 6 (5): 245–270.
83. Bianchini L. and Grinstein S. Regulation of volume-modulating ion transport systems by growth promoters, in Advances in comparative and environmental physiology. Springer, 1993: 249–277.
84. Palfrey H.C. and O’Donnell M.E. Characteristics and regulation of the Na/K/2CI cotransporter // Cellular Physiology and Biochemistry. 1992; 2 (6): 293307.
85. Dubois J.-M. and Rouzaire-Dubois B. The influence of cell volume changes on tumour cell proliferation // European Biophysics Journal. 2004; 33 (3): 227–232.
86. Rouzaire‐Dubois B., O’regan S. and Dubois J.M. Cell size‐dependent and independent proliferation of rodent neuroblastoma x glioma cells // Journal of cellular physiology. 2005; 203 (1): 243–250.
87. Burg M.B. Response of renal inner medullary epithelial cells to osmotic stress // Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2002; 133 (3): 661–666.
88. Lang F. et al. Cell volume in the regulation of cell proliferation and apoptotic cell death // Cellular Physiology and Biochemistry. 2000; 10 (5-6): 417–428.
89. Michea L. et al. Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells // American Journal of Physiology-Renal Physiology. 2000; 278 (2): F209–F218.
90. Klausen T.K. et al. Monovalent ions control proliferation of Ehrlich Lettre ascites cells // American Journal of Physiology-Cell Physiology. 2010; 299 (3): C714–C725.
91. Schreiber R. Ca2+ signaling, intracellular pH and cell volume in cell proliferation // The Journal of membrane biology. 2005; 205 (3): 129.
92. Wöll E. et al. The role of calcium in cell shrinkage and intracellular alkalinization by bradykinin in Ha‐ras oncogene expressing cells // FEBS letters. 1993; 322 (3): 261–265.
93. Wang Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis // Pflügers Archiv. 2004; 448 (3): 274–286.
94. Wang S. et al. Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF‐7 human breast carcinoma cell line // Journal of cellular physiology. 1998; 176 (3): 456–464.
95. Felipe A. et al. Potassium channels: new targets in cancer therapy // Cancer detection and prevention. 2006; 30 (4): 375–385.
96. Patel A.J. and Lazdunski M. The 2P-domain K+ channels: role in apoptosis and tumorigenesis // Pflügers Archiv. 2004; 448 (3): 261–273.
97. Voloshyna I. et al. TREK-1 is a novel molecular target in prostate cancer // Cancer research. 2008; 68 (4): 1197–1203.
98. Pardo L.A. et al. Approaches targeting Kv10. 1 open a novel window for cancer diagnosis and therapy // Current medicinal chemistry. 2012; 19 (5): 675–682.
99. Gómez-Varela D. et al. Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity // Cancer Research. 2007; 67 (15): 7343–7349.
100. Jäger H. et al. Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro // Molecular pharmacology. 2004; 65 (3): 630–638.
101. Chen L. et al. Roles of volume‐activated Cl− currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells // Cell proliferation. 2007; 40 (2): 253–267.
102. Varela D. et al. NAD (P) H oxidase-derived H2O2 signals chloride channel activation in cell volume regulation and cell proliferation // Journal of Biological Chemistry. 2004; 279 (14): 13301–13304.
103. Wang L., Chen L. and Jacob T. ClC-3 expression in the cell cycle of nasopharyngeal carcinoma cells // Sheng li xue bao: [Acta physiologica Sinica]. 2004; 56 (2): 230–236.
104. Liu W. et al. Inhibition of Ca2+-activated Cl− channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma // Cancer letters. 2012; 326 (1): 41–51.
105. Duvvuri U. et al. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression // Cancer research. 2012; 72 (13): 3270–3281.
106. Britschgi A. et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling // Proceedings of the National Academy of Sciences. 2013; 110 (11): E1026–E1034.
107. Kunzelmann K. Ion channels in regulated cell death // Cellular and Molecular Life Sciences. 2016; 73 (11- 12): 2387–2403.
108. Blikslager A.T. et al. Restoration of barrier function in injured intestinal mucosa // Physiological reviews. 2007; 87 (2): 545–564.
109. Dignass A.U. Mechanisms and modulation of intestinal epithelial repair // Inflammatory bowel diseases. 2001; 7 (1): 68–77.
110. Lohela M. and Werb Z. Intravital imaging of stromal cell dynamics in tumors // Current opinion in genetics & development. 2010; 20 (1): 72–78.
111. Schwab A. and Stock C. Ion channels and transporters in tumour cell migration and invasion // Phil. Trans. R. Soc. B. 2014; 369 (1638): 20130102.
112. Schwab A. et al. Role of ion channels and transporters in cell migration // Physiological reviews. 2012; 92 (4): 1865–1913.
113. Cooper J.A. The role of actin polymerization in cell motility // Annual Review of Physiology. 1991; 53 (1): 585–605.
114. Stossel T.P. On the crawling of animal cells // Science - New York then Washington. 1993; 260: 1086–1086.
115. Jakab M. and Ritter M. Cell volume regulatory ion transport in the regulation of cell migration, in Mechanisms and Significance of Cell Volume Regulation // Karger Publishers. 2006; 161–180.
116. Schwab A. et al. Migration of transformed renal epithelial cells is regulated by K+ channel modulation of actin cytoskeleton and cell volume // Pflügers Archiv European Journal of Physiology. 1999; 438 (3): 330–337.
117. Ridley A.J. et al. Cell migration: integrating signals from front to back // Science. 2003; 302 (5651): 1704– 1709.
118. Chiang Y. et al. EGF upregulates Na+/H+ exchanger NHE1 by post‐translational regulation that is important for cervical cancer cell invasiveness // Journal of cellular physiology. 2008; 214 (3): 810–819.
119. Lauritzen G. et al. The Na+/H+ exchanger NHE1, but not the Na+, cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2 // Cancer letters. 2012; 317 (2): 172–183.
120. Lagana A. et al. Regulation of the formation of tumor cell pseudopodia by the Na (+)/H (+) exchanger NHE1 // Journal of cell science. 2000; 113 (20): 3649–3662.
121. Stock C. et al. pH nanoenvironment at the surface of single melanoma cells // Cellular Physiology and Biochemistry. 2007; 20 (5): 679–686.
122. Ritter M. et al. Effect of inhibitors of Na+/H+‐exchange and gastric H+/K+ ATPase on cell volume, intracellular pH and migration of human polymorphonuclear leucocytes // British journal of pharmacology. 1998; 124 (4): 627–638.
123. Haas B.R. and Sontheimer H. Inhibition of the sodium-potassium-chloride cotransporter isoform-1 reduces glioma invasion // Cancer research. 2010; 70 (13): 5597–5606.
124. Schwab A. et al. Oscillating activity of a Ca (2+)-sensitive K+ channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells // Journal of Clinical Investigation. 1994; 93 (4): 1631.
125. Ransom C.B., O’Neal J.T. and Sontheimer H. Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells // Journal of Neuroscience. 2001; 21 (19): 7674–7683.
126. Soroceanu L., Manning T.J. and Sontheimer H. Modulation of glioma cell migration and invasion using Cl− and K+ ion channel blockers // Journal of Neuroscience. 1999; 19 (14): 5942–5954.
127. Mao J. et al. Blockage of volume-activated chloride channels inhibits migration of nasopharyngeal carcinoma cells // Cellular Physiology and Biochemistry. 2007; 19 (5-6): 249–258.
128. Chen Y.-F. et al. Motor Protein–Dependent Membrane Trafficking of KCl Cotransporter-4 Is Important for Cancer Cell Invasion // Cancer research. 2009; 69 (22): 8585–8593.
129. Rao J.N. et al. Activation of K+ channels and increased migration of differentiated intestinal epithelial cells after wounding // American Journal of Physiology-Cell Physiology. 2002; 282 (4): C885–C898.
130. Shin V.Y. et al. Nicotine suppresses gastric wound repair via the inhibition of polyamine and K+ channel expression // European journal of pharmacology. 2002; 444 (1): 115–121.
131. Trinh N.T.N. et al. EGF and K+ channel activity control normal and cystic fibrosis bronchial epithelia repair // American Journal of Physiology-Lung Cellular and Molecular Physiology. 2008; 295 (5): L866–L880.
132. Potier M. et al. Altered SK3/KCa2. 3-mediated migration in adenomatous polyposis coli (Apc) mutated mouse colon epithelial cells // Biochemical and biophysical research communications. 2010; 397 (1): 42–47.
133. Yang H. et al. Epidermal growth factor receptor transactivation by the cannabinoid receptor (CB1) and transient receptor potential vanilloid 1 (TRPV1) induces differential responses in corneal epithelial cells // Experimental eye research. 2010; 91 (3): 462–471.
134. Waning J. et al. A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration // Cell calcium. 2007; 42 (1): 17–25.
135. Hu J. and Verkman A. Increased migration and metastatic potential of tumor cells expressing aquaporin water channels // The FASEB Journal. 2006; 20 (11): 1892–1894.
136. Loitto V.M., Karlsson T. and Magnusson K.E. Water flux in cell motility: expanding the mechanisms of membrane protrusion // Cell motility and the cytoskeleton. 2009; 66 (5): 237–247.
137. Verkman A.S. Aquaporins at a glance // J. Cell. Sci. 2011; 124 (13): 2107–2112.
138. Hara-Chikuma M. and Verkman A. Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule // Journal of the American Society of Nephrology. 2006; 17 (1): 39–45.
139. Levin M.H. and Verkman A. Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization // Investigative ophthalmology & visual science. 2006; 47 (10): 4365–4372.
140. Hayashi S. et al. Involvement of aquaporin-1 in gastric epithelial cell migration during wound repair // Biochemical and biophysical research communications. 2009; 386 (3): 483–487.
141. Ruiz-Ederra J. and Verkman A. Aquaporin-1-facilitated keratocyte migration in cell culture and in vivo corneal wound healing models // Experimental eye research. 2009; 89 (2): 159–165.
142. Chen Z. et al. Impaired migration and cell volume regulation in aquaporin 5-deficient SPC-A1 cells // Respiratory physiology & neurobiology. 2011; 176 (3): 10–117.
143. Saadoun S. et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formationь // Journal of cell science. 2005; 118 (24): 5691–5698.
144. Chemaly A. et al. VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification // Journal of Experimental Medicine. 2010; 207 (1): 129–139.
145. Lang F. and Hoffmann E.K. Role of ion transport in control of apoptotic cell death // Comprehensive Physiology. 2012;
146. Pasantes-Morales H. Channels and volume changes in the life and death of the cell // Molecular pharmacology. 2016; 90 (3): 358–370.
147. Trump B. and Berezesky I. Calcium-mediated cell injury and cell death // The FASEB Journal. 1995; 9 (2): p. 219–228.
148. Lehen’kyi V.Y. et al. Ion channnels and transporters in cancer. 5. Ion channels in control of cancer and cell apoptosis // American Journal of Physiology-Cell Physiology. 2011; 301 (6): C1281–C1289.
149. Poulsen K.A. et al. Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels // American Journal of Physiology-Cell Physiology. 2010; 298 (1): C14–C25.
150. Porcelli A. et al. Apoptosis induced by staurosporine in ECV304 cells requires cell shrinkage and upregulation of Cl− conductance // Cell Death & Differentiation. 2004; 11 (6): 655–662.
151. Ise T. et al. Roles of volume-sensitive Cl− channel in cisplatin-induced apoptosis in human epidermoid cancer cells // The Journal of membrane biology. 2005; 205 (3): 139–145.
152. Bortner C.D. and Cidlowski J.A. Ion channels and apoptosis in cancer // Phil. Trans. R. Soc. B. 2014; 369 (1638): 20130104.
153. Okada Y. et al. Receptor‐mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD) // The Journal of physiology. 2001; 532 (1): 3–16.
154. Okada Y. and Maeno E. Apoptosis, cell volume regulation and volume-regulatory chloride channels // Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2001; 130 (3): 377–383.
155. Edwards Y.S. et al. Osmotic stress induces both secretion and apoptosis in rat alveolar type II cells // American Journal of Physiology-Lung Cellular and Molecular Physiology. 1998; 275 (4): L670–L678.
156. Maeno E. et al. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis // Proceedings of the National Academy of Sciences. 2000; 97 (17): 9487–9492.
157. Terada Y. et al. Hyperosmolality activates Akt and regulates apoptosis in renal tubular cells // Kidney international. 2001; 60 (2): 553–567.
158. Pedersen S.F. et al. The Na+/H+ exchanger, NHE1, differentially regulates mitogen-activated protein kinase subfamilies after osmotic shrinkage in Ehrlich Lettre Ascites cells // Cellular Physiology and Biochemistry. 2007; 20 (6): 735–750.
159. Reinehr R., Schliess F. and Häussinger D. Hyperosmolarity and CD95L trigger CD95/EGF receptor association and tyrosine phosphorylation of CD95 as prerequisites for CD95 membrane trafficking and DISC formation // The FASEB Journal. 2003; 17 (6): 731–733.
160. Friis M.B. et al. Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts // The Journal of physiology. 2005; 567 (2): 427–443.
161. Nielsen M.-B., Christensen S.T. and Hoffmann E.K. Effects of osmotic stress on the activity of MAPKs and PDGFR-β-mediated signal transduction in NIH-3T3 fibroblasts // American Journal of Physiology-Cell Physiology. 2008; 294 (4): C1046–C1055.
162. Bortner C.D. and Cidlowski J.A. Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death // Journal of Biological Chemistry. 2003; 278 (40): 39176–39184.
163. Franco R., Bortner C. and Cidlowski J. Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis // The Journal of membrane biology. 2006; 209 (1): 43–58.
164. Orlov S. et al. Apoptosis in serum-deprived vascular smooth muscle cells: evidence for cell volume-independent mechanism // Apoptosis. 2004; 9 (1): 55–66.
165. Bortner C.D. and Cidlowski J.A. Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes // American Journal of Physiology-Cell Physiology. 1996; 271 (3): C950– C961.
166. Platonova A. et al. Swelling rather than shrinkage precedes apoptosis in serum-deprived vascular smooth muscle cells // Apoptosis. 2012; 17 (5): 429–438.
167. Platonova A. et al. The death of ouabain-treated renal epithelial C11-MDCK cells is not mediated by swelling-induced plasma membrane rupture // J. Membr Biol. 2011; 241 (3): 145–154.
168. Siegel R., Naishadham D. and Jemal A. Cancer statistics, 2013 // CA: a cancer journal for clinicians. 2013; 63 (1): 11–30.
169. Prevarskaya N., Skryma R. and Shuba Y. Ion channels and the hallmarks of cancer // Trends in molecular medicine. 2010; 16 (3): 107–121.
170. Foroni C. et al. Epithelial–mesenchymal transition and breast cancer: Role, molecular mechanisms and clinical impact // Cancer treatment reviews. 2012; 38 (6): 689–697.
171. Rhim A.D. et al. EMT and dissemination precede pancreatic tumor formation // Cell. 2012; 148 (1): 349– 361.
172. Krishna R. and Mayer L.D. Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs // European Journal of Pharmaceutical Sciences. 2000; 11 (4): 265–283.
173. Maeno E., Takahashi N. and Okada Y. Dysfunction of regulatory volume increase is a key component of apoptosis // FEBS letters. 2006; 580 (27): 6513– 6517.
174. Numata T. et al. Hypertonicity-induced cation channels rescue cells from staurosporine-elicited apoptosis // Apoptosis. 2008; 13 (7): 895.
175. Rotin D. and Grinstein S. Impaired cell volume regulation in Na (+)-H+ exchange-deficient mutants // American Journal of Physiology-Cell Physiology. 1989; 257 (6): C1158–C1165.
176. Bonnet S. et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth // Cancer cell. 2007; 11 (1): 37–51.
177. Hoffmann E.K. and Lambert I.H. Ion channels and transporters in the development of drug resistance in cancer cells // Phil. Trans. R. Soc. B. 2014; 369 (1638): 20130109.
178. Han Y. et al. Detection of potassium currents and regulation of multidrug resistance by potassium channels in human gastric cancer cells // Cell biology international. 2007; 31 (7): 741–747.
179. Morikage T. et al. Modulation of cisplatin sensitivity and accumulation by amphotericin B in cisplatin-resistant human lung cancer cell lines // Cancer research. 1993; (14): 3302–3307.
180. Beketic-Oreskovic L. and Osmak M. Modulation of resistance to cisplatin by amphotericin B and aphidicolin in human larynx carcinoma cells // Cancer chemotherapy and pharmacology. 1995; 35 (4): 327– 333.
181. Min X.-j. et al. Dysfunction of volume-sensitive chloride channels contributes to cisplatin resistance in human lung adenocarcinoma cells // Experimental Biology and Medicine. 2011; 236 (4): 483–491.
182. Lee E.L. et al. Impaired activity of volume‐sensitive Cl− channel is involved in cisplatin resistance of cancer cells // Journal of cellular physiology. 2007; 211 (2): 513–521.
183. Mongin A.A. and Orlov S.N. MECHANISMS OF CELL VOLUME REGULATION // Physiology and Maintenance-Volume I: General Physiology. 2009; 1: 130.
Review
For citations:
Ponomarchuk O.O., Маximov G.V., Оrlov S.N. The regulation of epithelial cells volume in norm and pathology. Bulletin of Siberian Medicine. 2017;16(4):42-60. (In Russ.) https://doi.org/10.20538/1682-0363-2017-4-42-60