Preview

Бюллетень сибирской медицины

Расширенный поиск

Макрофаги и опухолевая прогрессия: на пути к макрофаг-специфичной терапии

https://doi.org/10.20538/1682-0363-2017-4-61-74

Аннотация

Согласно современной парадигме, предложенной Piter Novell [1], канцерогенез – это процесс клональной эволюции, в котором последовательные циклы клональной селекции в адаптивном тканевом микроокружении дают начало опухолям с разнообразными генетическими и другими молекулярными изменениями, определяющими особенности биологического поведения каждой индивидуальной опухоли. Отбор разных по биологическим свойствам клонов приводит к гетерогенности клеток внутри одной опухоли и обеспечивает тем самым низкий эффект химиотерапии.

В среднем только 40–60% пациентов с онкологическими заболеваниями эффективно отвечают на химиотерапию, и даже в случае первоначальной полной регрессии опухолей остается высокая вероятность рецидива [2, 3]. Повышение эффективности терапии солидных опухолей и снижение вероятности рецидива требует не только выбора оптимальных индивидуальных для каждого пациента схем терапии, но и разработки комбинированных подходов, направленных как на уничтожение опухолевых клеток, так и на противоопухолевое программирование микроокружения, где основную регуляторную роль играют иммунные клетки. Ключевыми клетками иммунной системы, определяющими взаимоотношения клеток опухоли с микроокружением, начиная с ранних стадий роста опухоли, включая регуляцию неоангиогенеза и до терминальной стадии диссеминации злокачественного процесса, являются опухолеассоциированные макрофаги (ОАМ) [4–6]. Идентификация путей, ответственных за поддерживающую опухоль функцию макрофагов, дает возможность разработки терапевтических подходов, которые сочетают в себе химиотерапию, в том числе таргетную, со стратегией блокирования макрофагов. Инструментом блокирования макрофагов может быть ингибиция их инфильтрации в опухоль, их уничтожение с помощью антимакрофагальных лекарственных агентов, выключение функции макрофагального колониестимулирующего фактора. Перспективны подходы одновременного воздействия на стволовые раковые клетки и ОАМ для отмены химиорезистентности и торможения опухолевой прогрессии. Развиваются стратегии перепрограммирования макрофагов с проопухолевыми функциями в клетки с противоопухо- левым фенотипом.

Таким образом, чрезвычайно широкий спектр регуляторной и эффекторной активности, с одной стороны, и высокая функциональная пластичность макрофагов, с другой, указывают на перспективность разработки макрофаг-направленных воздействий с целью создания таких условий для взаимоотношений опухоли и микроокружения, которые бы препятствовали прогрессии опухолевого процесса. 

Об авторах

Н. В. Чердынцева
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (РАН); Национальный исследовательский Томский государственный университет (НИ ТГУ)
Россия

д-р биол. наук, профессор, член-корреспондент РАН, зав. лабораторией

лаборатория молекулярной онкологии и иммунологии

634009, г. Томск, пер. Кооперативный, 5 

вед. науч. сотрудник

лаборатория трансляционной клеточной и молекулярной биомедицины

634050, г. Томск, пр. Ленина, 36 



И. В. Митрофанова
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (РАН); Национальный исследовательский Томский государственный университет (НИ ТГУ)
Россия

мл. науч. сотрудник

лаборатория трансляционной клеточной и молекулярной биомедицины

634009, г. Томск, пер. Кооперативный, 5 

аспирант

634050, г. Томск, пр. Ленина, 36 



М. А. Булдаков
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (РАН); Национальный исследовательский Томский государственный университет (НИ ТГУ)
Россия

канд. биол. наук, ст. науч. сотрудник

лаборатория молекулярной онкологии и иммунологии

634009, г. Томск, пер. Кооперативный, 5 

ст. науч. сотрудник

лаборатория трансляционной клеточной и молекулярной биомедицины

634050, г. Томск, пр. Ленина, 36 



М. Н. Стахеева
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (РАН)
Россия

д-р мед. наук, вед. науч. сотрудник

лаборатория молекулярной онкологии и иммунологии

634009, г. Томск, пер. Кооперативный, 5 



М. Р. Патышева
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (РАН)
Россия

врач-лаборант

лаборатория молекулярной онкологии и иммунологии

634009, г. Томск, пер. Кооперативный, 5 



М. В. Завьялова
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр Российской академии наук (РАН); Сибирский государственный медицинский университет (СибГМУ)
Россия

д-р мед. наук, профессор, вед. науч. сотрудник

634009, г. Томск, пер. Кооперативный, 5 

зав. кафедрой

кафедра патологической анатомии

634050, г. Томск, Московский тракт, 2 



Ю. Г. Кжышковска
Национальный исследовательский Томский государственный университет (НИ ТГУ); Университет Гейдельберга, Институт трансфузионной медицины и иммунологии
Россия

д-р биол. наук, профессор, зав. лабораторией

лаборатория трансляционной клеточной и молекулярной биомедицины

634050, г. Томск, пр. Ленина, 36 

зав. отделом

отдел врожденного иммунитета и толерантности

68167, г. Маннхайм, Theodor-Kutzer-Ufer, 1-3 



Список литературы

1. Nowell P.C. The clonal evolution of tumor cell populations // Science. 1976; 194 (4260): 23–28. DOI: 10.1126/ science.959840.

2. Greaves M., Maley C.C. Clonal evolution in cancer // Nature. 2012; 481 (7381): 306–313. DOI: 10.1038/nature10762.

3. Bhatia S., Frangioni J.V., Hoffman R.M., Iafrate A.J., Polyak K. The challenges posed by cancer heterogeneity // Nat. Biotechnol. 2012; 30 (7): 604–610. DOI: 10.1038/ nbt.2294.

4. Mantovani A., Germano G., Marchesi F., Locatelli M., Biswas S.K. Cancer-promotin tumor-associated macrophages: new vistas and open questions // Eur. J. Immuno. 2011; 41 (9): 2522–2525. DOI:10.1002/eji.201141894.

5. Pollard J.W. Tumour-educated macrophages promote tumour progression and metastasis // Nature Reviews Cancer. 2004; 4: 71–78. DOI: 10.1038/nrc1256.

6. Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis // Cell. 2010; 141: 39– 51. DOI: 10.1016/j.cell.2010.03.014.

7. Ferlay J., Shin H.R., Bray F., Forman D., Mathers C., Parkin D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 // Int. J. Cancer. 2010; 127 (12): 2893–2917. DOI: 10.1002/ijc.25516.

8. Thomas F., Fisher D., Fort P. et al. Applying ecological and evolutionary theory to cancer: a long and winding road // Evol. Appl. 2013; 6 (1): 1–10. DOI: 10.1111/ eva.12021.

9. Keogh B. Era of Personalized Medicine May Herald End of Soaring Cancer Costs // Oxford J. Medicine & Health JNCI. J. Natl. Cancer Inst. 2012; 104 (1): 12–17.

10. Напалков Н.П. Рак и демографический переход // Вопросы онкологии. 2004; 50 (2): 127–144. Napalkov N.P. Rak I demographicheskii perekhod [Cancer and demographic transition] // Voprosy onkologii. 2004; 50 (2): 127–144 (in Russian).

11. Кжышковска Ю.Г., Митрофанова И.В., Завьяло- ва М.В., Слонимская Е.М., Чердынцева Н.В. Опухо- леассоциированные макрофаги. М.: Наука, 2017: 224. Kzhyshkowska J.G., Mitrofanova I.V., Zavyalova M.V., Slonimskaya E.M., Cherdyntseva N.V. Opucholeassociirovannye makrofagi [Tumor-associated macrophages]. Moscow: Nauka Publ.: 224.

12. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation // Cell. 2011; 144: 646–674. DOI: 10.1016/j. cell.2011.02.013.

13. Loeb L.A. Human cancers express mutator phenotypes: origin, consequences and targeting // Nat. Rev. Cancer. 2011; 11 (6): 450–57. DOI: 10.1038/nrc3063.

14. Weisenberger D.J., Siegmund K.D., Campan M., Young J., Long T.I., Faasse M.A. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer // Nat. Genet. 2006; 38 (7): 787–793. DOI: 10.1038/ng1834.

15. Gatenby R.A., Silva A.S., Gillies R.J., Frieden B.R. Adaptive Therapy // Cancer Res. 2009; 69 (11): 4894–4903. DOI: 10.1158/0008-5472.CAN-08-3658.

16. Galon J., Mlecnik B., Bindea G., Angell H.K., Berger A., Lagorce C. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours // J. Pathol. 2014; 232 (2): 199–209. DOI: 10.1002/path.4287.

17. Gilbert L.A., Hemann M.T. DNA damage-mediated induction of a chemoresistant niche // Cell. 2010; 143 (3): 355–366. DOI: 10.1016/j.cell.2010.09.043.

18. Yang J., Li X., Liu X., Liu Y. The role of tumor-associated macrophages in breast carcinoma invasion and metastasis // Int. J. Clin. Exp. Pathol. 2015; 8 (6): 6656–6664.

19. Place A.E., Jin Huh S., Polyak K. The microenvironment in breast cancer progression: biology and implications for treatment // Breast Cancer Res. 2011. 13 (6): 227. DOI: 10.1186/bcr2912.

20. Pollard J.W. 2008. Macrophages define the invasive microenvironment in breast cancer // J. Leukoc. Biol. 2008; 84 (3): 623–630. DOI: 10.1189/jlb.1107762.

21. Correia A.L., Bissell M.J. The tumor microenvironment is a dominant force in multidrug resistance // Drug. Resist. Updat. 2012; 15 (0): 39–49. DOI: 10.1016/j.drup.2012.01.006.

22. Nakasone E.S., Askautrud H.A., Kees T. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance // Cancer Cell. 2012. 21 (4): 488–503. DOI: 10.1016/j.ccr.2012.02.017.

23. Pontiggia O., Sampayo R., Raffo D. et al. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through β1 integrin // Breast. Cancer Res. Treat. 2012; 133(2): 459–471. DOI: 10.1007/s10549-011-1766-x.

24. Bissell M.J., Hines W.C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression // Nat. Med. 2011. 17 (3): 320–329. DOI: 10.1038/nm.2328.

25. Bissell M.J., Radisky D. Putting tumours in context // Nat. Rev. Cancer. 2001; 1 (1): 46–54. DOI: 10.1038/35094059.

26. Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy // Immunity. 2014; 41: 49–61. DOI: 10.1016/j.immuni.2014.06.010.

27. Riabov V., Gudima A., Wang N., Mickley A., Orekhov A., Kzhyshkowska J., Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis // Front. Physiol. 2014; 5: 75. DOI: 10.3389/fphys.2014.00075.

28. Obeid E., Nanda R., Fu Y.X., Olopade O.I. The role of tumor-associated macrophages in breast cancer progression // Int. J. Oncol. 2013; 43 (1): 5–12. DOI: 10.3892/ ijo.2013.1938.

29. Tsou C.L., Peters W., Si Y., Slaymaker S., Aslanian A.M., Weisberg S.P., Mack M., Charo I.F. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites // J. Clin. Invest. 2007; 117 (4): 902–909. DOI: 10.1172/JCI29919.

30. Allavena P., Sica A., Garlanda C., Mantovani A. The yinyang of tumor-associated macrophages in neoplastic progression and immune surveillance // Immunol. Rev. 2008; 222: 155–161. DOI:10.1111/j.1600-065X.2008.00607.x.

31. Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. M-1/M-2 macrophages and the Th1/Th2 paradigm // J. Immunol. 2000; 164 (12): 6166–6173.

32. Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T. Macrophage activation and polarization: nomenclature and experimental guidelines // Immunity. 2014; 41: 14–20. DOI: 10.1016/j.immuni.2014.06.008.

33. Wang R., Zhang J., Chen S., Lu M., Luo X., Yao S. et al. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression // Lung Cancer. 2011; 74 (2): 188–196. DOI: 10.1016/j.lungcan.2011.04.009.

34. Franklin R.A., Liao W., Sarkar A., Kim M.V., Bivona M.R., Liu K., Pamer E.G., Li M.O. The cellular and molecular origin of tumor-associated macrophages // Science. 2014; 344 (6186): 921–925. DOI: 10.1126/science.1252510.

35. Laoui D., Movahedi K., Van Overmeire E., Van den Bossche J., Schouppe E., Mommer C., Nikolaou A., Morias Y., De Baetselier P., Van Ginderachter J.A.. Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions // Int. J. Dev. Biol. 2011; 55: 861–867. DOI: 10.1387/ijdb.113371dl.

36. Fu X.T., Dai Z., Song K., Zhang Z.J., Zhou Z.J., Zhou S.L., Zhao Y.M., Xiao Y.S., Sun Q.M., Ding Z.B., Fan J. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway // Int. J. Oncol. 2015; 46 (2): 587–596. DOI: 10.3892/ijo.2014.2761.

37. Chitu V., Stanley E.R. Colony-stimulating factor-1 in immunity and inflammation // Curr. Opin. Immunol. 2006; 18 (1): 39-48. DOI: 10.1016/j.coi.2005.11.006.

38. Smith H.O., Stephens N.D., Qualls C.R., Fligelman T., Wang T., Lin C.Y., Burton E., Griffith J.K., Pollard J.W. The clinical significance of inflammatory cytokines in primary cell culture in endometrial carcinoma // Mol. Oncol. 2013; 7: 41–54. DOI: 10.1016/j.molonc. 2012.07.002.

39. Wyckoff J.B., Wang Y., Lin E.Y., Li J.F., Goswami S., Stanley E.R., Segall J.E., Pollard J.W., Condeelis J. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors // Cancer. Res. 2007; 67: 2649–2656. DOI: 10.1158/0008-5472.CAN-06-1823.

40. Abraham D., Zins K., Sioud M. Lucas T., Schäfer R., Stanley E.R., Aharinejad S. Stromal cell-derived CSF-1 blockade prolongs xenograft survival of CSF-1-negative neuroblastoma // Int. J. Cancer. 2010; 126: 1339–1352. DOI: 10.1002/ijc.24859.

41. Linde N., Lederle W., Depner S., van Rooijen N., Gutschalk C.M., Mueller M.M. Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages // J. Pathol. 2012; 227:17–28. DOI: 10.1002/path.3989.

42. Brown D., Trowsdale J., Allen R. The LILR family: modulators of innate and adaptive immune pathways in health and disease // Tissue antigens. 2004; 64: 215–225. DOI: 10.1111/j.0001-2815.2004.00290.x.

43. Loke P., Allison J.P. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells // Proc. Natl. Acad. Sci. USA. 2003; 100: 5336–5341. DOI: 10.1073/ pnas.0931259100.

44. Belai E.B., de Oliveira C.E., Gasparoto T.H., Ramos R.N., Torres S.A., Garlet G.P., Cavassani K.A., Silva J.S., Campanelli A.P. PD-1 blockage delays murine squamous cell carcinoma development // Carcinogenesis. 2014; 35: 424–431. DOI: 10.1093/carcin/bgt305.

45. Simpson T.R., Li F., Montalvo-Ortiz W., Sepulveda M.A., Bergerhoff K., Arce F., Roddie C., Henry J.Y., Yagita H., Wolchok J.D., Peggs K.S., Ravetch J.V., Allison J.P., Quezada S.A. Fc-dependent depletion of tumor-infiltrating regulatory T cells codefines the efficacy of anti– CTLA-4 therapy against melanoma // J. Exp. Med. 2013; 210: 1695–1710. DOI: 10.1084/jem.20130579.

46. Oh S.A., Li M.O. TGF-β: guardian of T cell function // J. Immunol. 2013; 191 (8): 3973–3979. DOI: 10.4049/ jimmunol.1301843.

47. Ng T.H., Britton G.J., Hill E.V., Verhagen J., Burton B.R., Wraith D.C. Regulation of adaptive immunity; the role of interleukin-10 // Front. Immunol. 2013; 4: 129. DOI: 10.3389/fimmu.2013.00129.

48. Adeegbe D.O., Nishikawa H. Natural and induced T regulatory cells in cancer // Frontiers in immunology. 2013; 4: 190. DOI: 10.3389/fimmu.2013.00190.

49. Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumors. Nature reviews // Immunology. 2012; 12: 253–268. DOI: 10.1038/ nri3175.

50. Sainz J.B., Mart´ın B., Tatari M., Heeschen C., Guerra S., ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells // Cancer Research. 2014; 74 (24): 7309–7320, 2014. DOI: 10.18632/oncotarget.9383.

51. Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis // Nature reviews. Cancer. 2009; 9: 239– 252. DOI: 10.1038/nrc2618.

52. Rohan T.E., Xue X., Lin H.M., D’Alfonso T.M., Ginter P.S., Oktay M.H., Robinson B.D., Ginsberg M., Gertler F.B., Glass A.G., Sparano J.A., Condeelis J.S., Jones J.G. Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer // J. Natl. Cancer Inst. 2014; 106 (8): dju136. DOI: 10.1093/jnci/dju136.

53. Qian B.Z., Li J., Zhang H. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis // Nature. 2011; 475 (7355): 222–5. DOI: 10.1038/nature10138.

54. Qian B., Deng Y., Im J.H., Muschel R.J., Zou Y., Li J., Lang R.A., Pollard J.W. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth // PloS one. 2009; 4: e6562. DOI: 10.1371/journal.pone.0006562.

55. Gao D., Vahdat L.T., Wong S. Chang J.C., Mittal V. Microenvironmental regulation of epithelialmesenchymal transitions in cancer // Cancer. Res. 2012; 72 (19): 4883–9. doi: 10.1158/0008-5472.CAN-12-1223.

56. Перельмутер В.М., Манских В.Н. Прениша как от- сутствующее звено концепции метастатических ниш, объясняющее избирательное метастазирование зло- качественных опухолей и форму метастатической болезни // Биохимия. 2012; 77 (1): 130–139. Perelmuter V.M., Manskih V.N. Prenisha kak otsutstvuuyschee zveno koncepcii metastaticheskih nish, ob`yasnyayuschee izbiratelnoe metastazirovanie zlokachestvennyh opukholei i formu metastaticheskoi bolezni [Preniche as missing link of the metastatic niche concept explaining organ-preferential metastasis of malignant tumors and the type of metastatic disease] // Biokhimiya – Biochemistry. 2012; 77 (1): 130–139 (in Russia).

57. Zitvogel L., Galluzzi L., Smyth M.J., Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance // Immunity. 2013; 39 (1): 74–88. DOI: 10.1016/j.immuni.2013.06.014.

58. Bracci L., Schiavoni G., Sistigu A., Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer // Cell. Death. and Differentiation. 2014. 21: 15–25. DOI:10.1038/ cdd.2013.67.

59. Gampenrieder S.P., Rinnerthaler G., Greil R. Neoadjuvant chemotherapy and targeted therapy in breast cancer: past, present, and future // J. Oncol. 2013; 2013:732047. DOI: 10.1155/2013/732047.

60. Thompson A.M., Moulder-Thompson S.L. 2012. Neoadjuvant treatment of breast cancer // Ann. Oncol. 23 Suppl. 10, x231. DOI: 10.1093/annonc/mds324.

61. De Palma M., Lewis C.E. Cancer: Macrophages limit chemotherapy // Nature. 2011; 472 (7343): 303–304. DOI: 10.1038/472303a.

62. Hughes R., Qian B.Z., Rowan C., Muthana M., Keklikoglou I., Olson O.C., Tazzyman S., Danson S., Addison C., Clemons M., Gonzalez-Angulo A.M., Joyce J.A., De Palma M., Pollard J.W., Lewis C.E. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy // Cancer Res. 2015; 75 (17): 3479–3491. DOI: 10.1158/0008-5472.CAN-14-3587.

63. Germano G., Frapolli R., Belgiovine C., Anselmo A., Pesce S., Liguori M., Erba E., Uboldi S., Zucchetti M., Pasqualini F. Role of macrophage targeting in the antitumor activity of trabectedin // Cancer Cell. 2013; 23: 249–262. DOI: 10.1016/j.ccr.2013.01.008.

64. Srivastava K., Hu J., Korn C., Savant S., Teichert M., Kapel S.S., Jugold M., Besemfelder E., Thomas M., Pasparakis M., Augustin H.G. Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth // Cancer Cell. 2014; 26: 880–895. DOI: 10.1016/j.ccell.2014.11.005.

65. Mantovani A., Allavena P. The interaction of anticancer therapies with tumor-associated macrophages // J. Exp. Med. 2015; 212 (4): 435–445. DOI: 10.1084/jem.20150295. 66. De Palma, M., Lewis C.E. 2013. Macrophage regulation of tumor responses to anticancer therapies // Cancer Cell. 23: 277–286. DOI: 10.1016/j.ccr.2013.02.013.

66. Zavyalova M.V., Denisov E.V., Tashireva L.A., Gerashchenko T.S., Litviakov N.V., Skryabin N.A., Vtorushin S.V., Telegina N.S., Slonimskaya E.M., Cherdyntseva N.V., Perelmuter V.M. Phenotypic drift as a cause for intratumoral morphological heterogeneity of invasive ductal breast carcinoma not otherwise specified // Biores. Open Access. 2013; 2 (2): 148-54. DOI: 10.1089/ biores.2012.0278.

67. Tashireva L.A., Denisov E.V., Gerashchenko T.S., Pautova D.N., Buldakov M.A., Zavyalova M.V., Kzhyshkowska J., Cherdyntseva N.V., Perelmuter V.M. Intratumoral heterogeneity of macrophages and fibroblasts in breast cancer is associated with the morphological diversity of tumor cells and contributes to lymph node metastasis // Immunobiology. 2017; 222 (4): 631–640. DOI: 10.1016/j. imbio.2016.11.012.

68. Denisov E.V., Skryabin N.A., Gerashchenko T.S., Tashireva L.A., Wilhelm J., Buldakov M.A., Sleptcov A.A., Lebedev I.N., Vtorushin S.V., Zavyalova M.V., Cherdyntseva N.V., Perelmuter V.M. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness // Oncotarget. 2017. DOI: 10.18632/oncotarget.18022.

69. Gerashchenko T.S., Denisov E.V., Litviakov N.V., Zavyalova M.V., Vtorushin S.V., Tsyganov M.M., Perelmuter V.M., Cherdyntseva N.V. Intratumor heterogeneity: nature and biological significance // Biochemistry (Mosc). 2013; 78: 1201. DOI: 10.1134/S0006297913110011.

70. Buldakov M., Zavyalova M., Krakhmal N., Telegina N., Vtorushin S., Mitrofanova I., Riabov V., Yin S., Song B., Cherdyntseva N., Kzhyshkowska J. CD68+, but not stabilin-1+ tumor associated macrophages in gaps of ductal tumor structures negatively correlate with the lymphatic metastasis in human breast cancer // Immunobiology. 2015; 222 (1): 31–38. DOI: 10.1016/j.imbio.2015.09.011.

71. Mitrofanova I., Zavyalova M., Telegina N., Buldakov M., Riabov V., Cherdyntseva N., Kzhyshkowska J. Tumor-associated macrophages in human breast cancer parenchyma negatively correlate with lymphatic metastasis after neoadjuvant chemotherapy // Immunobiology. 2017; 222 (1): 101–109. DOI: 10.1016/j.imbio.2016.08.001.

72. Shao R., Hamel K., Petersen L., Cao Q.J., Arenas R.B., Bigelow C., Bentley B., Yan W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis // Oncogene. 2009; 28 (50): 4456-68. DOI: 10.1038/onc.2009.292.

73. Kzhyshkowska J., Yin S., Liu T., Riabov V., Mitrofanova I. Role of chitinase-like proteins in cancer // Biol. Chem. 2016; 397 (3): 231–247. DOI: 10.1515/hsz-2015-0269.

74. Kzhyshkowska J., Gratchev A., Goerdt S. Human chitinases and chitinase-like proteins as indicators for inflammation and cancer // Biomark Insights. 2007; 2: 128–246.

75. Biggar R.J., Johansen J.S., Smedby K.E., Rostgaard K., Chang E.T., Adami H.O., Glimelius B., Molin D., Hamilton-Dutoit S., Melbye M., Hjalgrim H. Serum YKL-40 and interleukin 6 levels in Hodgkin lymphoma // Clin. Cancer Res. 2008; 14 (21): 6974-6978. DOI: 10.1158/1078- 0432.CCR-08-1026.

76. Kzhyshkowska J., Mamidi S., Gratchev A., Kremmer E., Schmuttermaier C., Krusell L., Haus G., Utikal J., Schledzewski K., Scholtze J., Goerdt S. Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway // Blood. 2006; 107: 3221–3228. DOI: 10.1182/blood-2005-07-2843.

77. Faneyte I.F., Schrama J.G., Peterse J.L., Remijnse P.L., Rodenhuis S., van de Vijver M.J.. Breast cancer response to neoadjuvant chemotherapy: predictive markers and relation with outcome // Br. J. Cancer 2003; 88 (3): 406–412. DOI: 10.1038/sj.bjc.6600749.

78. Casazza A., Laoui D., Wenes M., Rizzolio S., Bassani N., Mambretti M., Deschoemaeker S., Van Ginderachter J.A., Tamagnone L., Mazzone M.. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity // Cancer Cell. 2013; 24: 695–709. DOI: http://dx.doi.org/10.1016/j.ccr.2013.11.007.


Рецензия

Для цитирования:


Чердынцева Н.В., Митрофанова И.В., Булдаков М.А., Стахеева М.Н., Патышева М.Р., Завьялова М.В., Кжышковска Ю.Г. Макрофаги и опухолевая прогрессия: на пути к макрофаг-специфичной терапии. Бюллетень сибирской медицины. 2017;16(4):61-74. https://doi.org/10.20538/1682-0363-2017-4-61-74

For citation:


Cherdyntseva N.V., Mitrofanova I.V., Buldakov M.A., Stakheeva M.N., Patysheva M.R., Zavjalova M.V., Kzhyshkowska J.G. Macrophages and tumor progression: on the way to macrophage-specific therapy. Bulletin of Siberian Medicine. 2017;16(4):61-74. (In Russ.) https://doi.org/10.20538/1682-0363-2017-4-61-74

Просмотров: 2514


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)