Preview

Bulletin of Siberian Medicine

Advanced search

Influence on mitogen-activated protein kinases as a new direction of connective tissue growth regulation

https://doi.org/10.20538/1682-0363-2017-4-86-93

Abstract

This review presents current classification, functions of main groups of mitogen-activated protein kinases (MAPK) and summarizes data on the ways of their activation and functioning, giving particular emphasis to p38 MAPK. The authors consider the influence on these signaling cascades as a promising direction for activation of connective tissue growth. This article summarizes international practices on the activation and blocking of intracellular cascades and also the authors’ own experience in this field. In particular, the article shows that p38 MAP-kinase stimulation while JNK inactivation causes accelerated formation of connective tissue in the area of postoperative surgical scar. The authors prove the opportunity to manage connective tissue growth influencing MAPK cascades – prolonged blockade of p38 МАРК reduces scar width and collagen fiber density in the area of postoperative scars and decreases intensity of adhesions in the abdominal cavity in abdominal trauma.

Therefore, considering the importance and flexibility of MAP-kinase mechanisms of cell growth regulation and differentiation, studying the use of these mechanisms in biological processes (such as inflammation, apoptosis, regeneration) and the development the methods of management of these processes show promise. Using stimulators and inhibitors of MAP-kinase mechanisms is a promising new direction in treatment of the diseases with pathogeny related to the disorder of cellular differentiation, proliferation, excessive cytokine production and regulation of connective tissue growth.

About the Authors

I. A. Shurygina
Irkutsk Scientific Center of Surgery and Traumatology (ISCST)
Russian Federation

DM, Professor, Deputy Director for Research

1, Bortsov Revolutsii Str., Irkutsk, 664003



M. G. Shurygin
Irkutsk Scientific Center of Surgery and Traumatology (ISCST)
Russian Federation

DM, Head of Scientific and Laboratory Department

1, Bortsov Revolutsii Str., Irkutsk, 664003



N. V. Zelenin
Irkutsk Scientific Center of Surgery and Traumatology (ISCST)
Russian Federation

Surgeon

1, Bortsov Revolutsii Str., Irkutsk, 664003



N. I. Ayushinova
Irkutsk Scientific Center of Surgery and Traumatology (ISCST)
Russian Federation

Surgeon, Department of Purulent Surgery No. 1

1, Bortsov Revolutsii Str., Irkutsk, 664003



References

1. Kyriakis J.M., Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update // Physiol. Rev. 2012; Apr. 92 ( 2): 689– 737. DOI: 10.1152/physrev.00028.2011.

2. Yao Y., Li W., Wu J., Germann U.A., Su M.S., Kuida K., Boucher D.M. Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation // Proc. Natl. Acad. Sci. USA. 2003; Oct. 100 (22): 12759–12764.

3. Pages G., Guerin S., Grall D., Bonino F., Smith A., Anjuere F., Auberger P., Pouyssegur J. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice // Science. 1999; Nov. 286 (5443): 1374–1377.

4. Bode A.M., Dong Z. The functional contrariety of JNK // Mol. Carcinog. 2007; Aug. 46 (8): 591–598.

5. Waetzig V., Herdegen T. Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage // Trends Pharmacol. Sci. 2005; Sep. 26 ( 9): 455–461.

6. De Boer W.I. Perspectives for cytokine antagonist therapy in COPD // Drug Discov. Today. 2005; Jan. 10 (2): 93–106.

7. Kant S., Schumacher S., Singh M.K., Kispert A., Kotlyarov A., Gaestel M. Characterization of the atypical MAPK ERK4 and its activation of the MAPK-activated protein kinase MK5 // J. Biol. Chem. 2006; Nov. 281 (46): 35511–35519.

8. Coulombe P., Meloche S. Atypical mitogen-activated protein kinases: structure, regulation and functions // Biochim. Biophys. Acta. 2007; Aug. 1773(8): 1376–1387.

9. Boutros T., Chevet E., Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer // Pharmacol. Rev. 2008; Sep. 60 (3): 261–310. DOI: 10.1124/ pr.107.00106.

10. Шурыгина И.А., Шурыгин М.Г., Зеленин Н.В., Гранина Г.Б. Роль МАР-киназных механизмов в регуляции клеточного роста (обзор литературы) // Сиб. мед. журн. (Иркутск). 2009; 89 (6): 36–40. Shurygina I.A., Shurygin M.G., Zelenin N.V., Granina G.B. Rol’ MAR-kinaznykh mekhanizmov v regulyatsii kletochnogo rosta (obzor literatury) [Role of MAP-kinase mechanisms in the regulation of cell growth (review)] // Sibirskiy meditsinskiy zhurnal (Irkutsk) – Siberian Medical Journal (Irkutsk). 2009;. 89 (6): 36–40 (in Russian).

11. Атауллаханов Ф.И. Каскады ферментативных реакций и их роль в биологии // Соросовский образовательный журнал. 2000; 6 (7): 2–10. Ataullakhanov F.I. Kaskady fermentativnykh reaktsiy i ikh rol' v biologii [The cascades of enzymatic reactions and their role in biology] // Sorosovskiy obrazovatel'nyy zhurnal – Soros Educational Journal. 2000; 6 (7): 2–10 (in Russian).

12. Li M., Georgakopoulos D., Lu G., Hester L., Kass D.A., Hasday J., Wang Y. p38 MAP kinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart // Circulation. 2005; May. 111 (19): 2494–2502.

13. Maulik N. Effect of p38 MAP kinase on cellular events during ischemia and reperfusion: possible therapy // Am. J. Physiol. Heart Circ. Physiol. 2005; Dec. 289 (6): 2302–2303.

14. Das D.K., Maulik N. Preconditioning potentiates redox signaling and converts death signal into survival signal // Arch. Biochem. Biophys. 2003; Dec. 420 ( 2): 305–311.

15. Sato M., Cordis G.A., Maulik N., Das D.K. SAPKs regulation of ischemic preconditioning // Am. J. Physiol. Heart Circ. Physiol. 2000; Sep. 279 (3): 901–907.

16. Loufrani L., Lehoux S., Tedgui A., Levy B.I., Henrion D. Stretch induces mitogen-activated protein kinase activation and myogenic tone through 2 distinct pathways // Arterioscler. Thromb. Vasc. Biol. 1999; Dec. 19 (12): 2878–2883.

17. Ryder J.W., Fahlman R., Wallberg-Henriksson H., Alessi D.R., Krook A., Zierath J.R. Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. Involvement Of the mitogen- and stress-activated protein kinase 1 // J. Biol. Chem. 2000; Jan. 275 (2): 1457–1462.

18. Wretman C., Lionikas A., Widegren U., Lannergren J., Westerblad H., Henriksson J. Effects of concentric and eccentric contractions on phosphorylation of MAPK(erk1/2) and MAPK(p38) in isolated rat skeletal muscle // J. Physiol. 2001; Aug. 535 (1): 155–164.

19. Martineau L.C., Gardiner P.F. Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension // J. Appl. Physiol. 2001; Aug. 91 (2): 693–702.

20. Boppart M.D., Hirshman M.F., Sakamoto K., Fielding R.A., Goodyear L.J. Static stretch increases c-Jun NH2-terminal kinase activity and p38 phosphorylation in rat skeletal muscle // Am. J. Physiol. Cell Physiol. 2001; Feb. 280 (2): 352–358.

21. Kjaer M., Magnusson P., Krogsgaard M., Boysen Moller J., Olesen J., Heinemeier K., Hansen M., Haraldsson B., Koskinen S., Esmarck B., Langberg H. Extracellular matrix adaptation of tendon and skeletal muscle to exercise // J. Anat. 2006. Apr. 208 (4): 445–450.

22. Garrington T.P., Johnson G.L. Organization and regulation of mitogen-activated protein kinase signaling pathways // Curr. Opin. Cell Biol. 1999. Apr. 11 (2): 211–218.

23. Yue X.J., Guo Y., Yang H.J., Feng Z.W., Li T., Xu Y.M. Transforming growth factor-β1 induces fibrosis in rat meningeal mesothelial cells via the p38 signaling pathway // Mol. Med. Rep. 2016. Aug. 14 (2): 1709–1713. DOI: 10.3892/mmr.2016.5411.

24. Cao Y.L., Duan Y., Zhu L.X., Zhan Y.N., Min S.X., Jin A.M. TGF-β1, in association with the increased expression of connective tissue growth factor, induce the hypertrophy of the ligamentum flavum through the p38 MAPK pathway // Int. J. Mol. Med. 2016; Aug. 38 (2): 391–398. DOI: 10.3892/ijmm.2016.2631.

25. Luo Y.H., Ouyang P.B., Tian J., Guo X.J., Duan X.C. Rosiglitazone inhibits TGF-β 1 induced activation of human Tenon fibroblasts via p38 signal pathway // PLoS One. 2014; Aug. 9 (8): e105796. DOI: 10.1371/journal. pone.0105796.

26. Xiao Y.Q., Liu K., Shen J.F., Xu G.T., Ye W. SB-431542 inhibition of scar formation after filtration surgery and its potential mechanism // Invest. Ophthalmol. Vis. Sci. 2009; Apr. 50 (4): 1698–1706. DOI: 10.1167/iovs.08-1675.

27. Shurygina I.A., Shurygin M.G., Granina G.B., Zelenin N.V. Application of mitogen-activated protein kinase inhibitor SP 600125 for wound healing control // J. Regenerative Medicine & Tissue Engineering. 2013; 2. DOI: http://dx.doi.org/10.7243/2050-1218-2-9.

28. Гранина Г.Б., Зеленин Н.В., Шурыгина И.А., Шурыгин М.Г., Лепехова С.А., Зеленин В.Н. Подавление активности Jnk MAPK в регуляции синтеза коллагена при раневом процессе // Бюл. Вост.-Сиб. научн. центра СО РАМН. 2010; 5; 177–179. Granina G.B., Zelenin N.V., Shurygina I.A., Shurygin M.G., Lepekhova S.A., Zelenin V.N. Podavlenie aktivnosti Jnk MAPK v regulyatsii sinteza kollagena pri ranevom protsesse [Suppression of activity of Jnk MAPK in regulation of collagen synthesis at wound process] // Bulleten’ Vostocno-Sibirskogo naucnogo centra – Bulletin of the East Siberian Scientific Center SB RAMS. 2010; 5: 177–179 (in Russian).

29. Шурыгин М.Г., Шурыгина И.А., Гранина Г.Б., Зеленин Н.В., Аюшинова Н.И. Активность MAP-киназных систем при репаративном процессе: оценка с использованием лазерной конфокальной микроскопии // Изв. РАН. Сер. физическая. 2016; 80 (1): 19–21. DOI: 10.7868/S036767651601021X. Shurygin M.G., Shurygina I.A., Granina G.B., Zelenin N.V., Ayushinova N.I. Aktivnost' MAP-kinaznykh sistem pri reparativnom protsesse: otsenka s ispol'zovaniem lazernoy konfokal'noy mikroskopii [Activity of MAP-kinase systems in reparative process: evaluation using laser confocal microscopy] // Izv. RAN. Ser. fizicheskaya – Bulletin of the Russian Academy of Sciences: Physics. 2016;. 80 (1):. 19–21 (in Russian). DOI: 10.7868/ S036767651601021X.

30. Шурыгина И.А., Мантурова Н.Е., Зеленин Н.В., Гранина Г.Б., Шурыгин М.Г. Использование блокатора р38 митогенактивируемой протеинкиназы для формирования послеоперационного рубца // Анналы пластической, реконструктивной и эстетической хирургии. 2014; 3: 41–45. Shurygina I.A., Manturova N.E., Zelenin N.V., Granina G.B., Shurygin M.G. Ispol'zovanie blokatora r38 mitogenaktiviruemoy proteinkinazy dlya formirovaniya posleoperatsionnogo rubtsa [Using p38 mitogen-activated protein kinase inhibitor for the formation of the postoperative scar] // Annaly plasticheskoy, rekonstruktivnoy i esteticheskoy khirurgii – Annals of Plastic, Reconstructive and Aesthetic Surgery. 2014; 3: 41–45 (in Russian).

31. Shurygina I.A., Shurygin M.G., Ayushinova N.I., Granina G.B., Zelenin N.V. Mechanisms of connective tissue formation and blocks of mitogen activated protein kinase // Front. Chem. Sci. Eng. 2012; 6 (2): 232–237. DOI: 10.1007/s11705-012-1286-1.

32. WO 2012156938. Compounds, pharmaceutical compositions and a method for the prophylaxis and treatment of the adhesion process / Shurygin M.G., Shurygina I.A.; published 22.11.2012.

33. Шурыгина И.А., Шурыгин М.Г., Аюшинова Н.И., Каня О.В. Фибробласты и их роль в развитии сое- динительной ткани // Сиб. мед. журн. (Иркутск). 2012; 110 (3): 8–12. Shurygina I.A., Shurygin M.G., Ayushinova N.I., Kanya O.V. Fibroblasty i ikh rol’ v razvitii soedinitel’noy tkani [Fibroblasts and their role in the development of connective tissue] // Sibirskiy meditsinskiy zhurnal (Irkutsk) – Siberian Medical Journal (Irkutsk). 2012; 110 (3): 8–12 (in Russian).

34. Liang C.J., Yen Y.H., Hung L.Y., Wang S.H., Pu C.M., Chien H.F., Tsai J.S., Lee C.W., Yen F.L., Chen Y.L. Thalidomide inhibits fibronectin production in TGF-β1- treated normal and keloid fibroblasts via inhibition of the p38/Smad3 pathway // Biochem. Pharmacol. 2013; Jun. 85 (11): 1594–1602. DOI: 10.1016/j.bcp.2013.02.038.

35. Song J., Xu H., Lu Q., Xu Z., Bian D., Xia Y., Wei Z., Gong Z., Dai Y. Madecassoside suppresses migration of fibroblasts from keloids: involvement of p38 kinase and PI3K signaling pathways // Burns. 2012; Aug. 38 (5): 677–684. DOI: 10.1016/j.burns.2011.12.017.

36. He S., Liu X., Yang Y., Huang W., Xu S., Yang S., Zhang X., Roberts M.S. Mechanisms of transforming growth factor beta(1)/Smad signalling mediated by mitogen-activated protein kinase pathways in keloid fibroblasts // Br. J. Dermatol. 2010; Mar. 162 (3): 538–546. DOI: 10.1111/j.1365-2133.2009.09511.x.

37. Xia W., Longaker M.T., Yang G.P. P38 MAP kinase mediates transforming growth factor-beta2 transcription in human keloid fibroblasts // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006; Mar. 290 (3): 501–508.

38. Du Q.C., Zhang D.Z., Chen X.J., Lan-Sun G., Wu M., Xiao W.L. The effect of p38MAPK on cyclic stretch in human facial hypertrophic scar fibroblast differentiation // PLoS One. 2013; Oct. 8 (10): e75635. DOI: 10.1371/ journal.pone.0075635.

39. Westra I.M., Mutsaers H.A., Luangmonkong T., Hadi M., Oosterhuis D., de Jong K.P., Groothuis G.M., Olinga P. Human precision-cut liver slices as a model to test antifibrotic drugs in the early onset of liver fibrosis // Toxicol. In Vitro. 2016; Sep. 35: 77–85. DOI: 10.1016/j. tiv.2016.05.012.

40. Rohani M.G., Parks W.C. Matrix remodeling by MMPs during wound repair // Matrix Biol. 2015; May-Jul. 44– 46: 113–121. DOI: 10.1016/j.matbio.2015.03.002.

41. Holmstrom K.M., Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling // Nat. Rev. Mol. Cell. Biol. 2014; Jun. 15 (6): 411–421. DOI: 10.1038/nrm3801.

42. Nelson K.K., Melendez J.A. Mitochondrial redox control of matrix metalloproteinases // Free Radic. Biol. Med. 2004; Sep. 37 (6): 768–784.

43. Шурыгин М.Г., Шурыгина И.А., Дремина Н.Н., Каня О.В. Матриксная металлопротеаза 9 и ремоделирование при инфаркте миокарда // Бюл. Вост.-Сиб. научн. центра СО РАМН. 2013; 90 (2–1): 138–141. Shurygin M.G., Shurygina I.A., Dryomina N.N., Kanya O.V. Matriksnaya metalloproteaza 9 i remodelirovanie pri infarkte miokarda [Matrix metalloproteinase 9 and remodeling after myocardial infarction] // Bulleten’ Vostocno-Sibirskogo naucnogo centra – Bulletin of the East Siberian Scientific Center SB RAMS. 2013; 90 (2–1): 138–141 (in Russian).

44. Ravanti L., Heino J., López-Otín C., Kahari V.M. Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase // J. Biol. Chem. 1999; Jan. 274 (4): 2446–2455.

45. Westermarck J., Li S.P., Kallunki T., Han J., Kahari V.M. p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP1) gene expression // Mol. Cell. Biol. 2001; Apr. 21 (7): 2373–2383.

46. Шурыгин М.Г., Шурыгина И.А. Фактор роста фибробластов как стимулятор ангиогенеза при инфаркте миокарда // Сибирский научный медицинский журнал. 2010; 30 (6): 89–92. Shurygin M.G., Shurygina I.A. Faktor rosta fibroblastov kak stimulyator angiogeneza pri infarkte miokarda [Fibroblast growth factor as a stimulator of angiogenesis at myocardial infarction] // Sibirskiy nauchnyy meditsinskiy zhurnal – Siberian Journal of Medical Research. 2010;. 30 (6): 89–92 (in Russian).

47. Coumoul X., Deng C.X. Roles of FGF receptors in mammalian development and congenital diseases // Birth. Defects Res. C Embryo Today. 2003; Nov. 69, (4): 286–304.

48. Engel F.B., Hsieh P.C., Lee R.T., Keating M.T. FGF1/ p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction // Proc. Natl. Acad. Sci. USA. 2006; Oct. 103 (42): 15546–15551.

49. Kyttaris V.C. Kinase inhibitors: a new class of antirheumatic drugs // Drug Des. Devel. Ther. 2012; 6: 245–250.

50. Kragholm K., Newby L.K., Melloni C. Emerging treatment options to improve cardiovascular outcomes in patients with acute coronary syndrome: focus on losmapimod // Drug Des. Devel. Ther. 2015; Aug. 9: 4279–4286.

51. Cohen S.B., Cheng T.T., Chindalore V., Damjanov N., Burgos-Vargas R., Delora P., Zimany K., Travers H., Caulfield J.P. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis // Arthritis Rheum. 2009; Feb. 60 (2): 335–344.


Review

For citations:


Shurygina I.A., Shurygin M.G., Zelenin N.V., Ayushinova N.I. Influence on mitogen-activated protein kinases as a new direction of connective tissue growth regulation. Bulletin of Siberian Medicine. 2017;16(4):86-93. (In Russ.) https://doi.org/10.20538/1682-0363-2017-4-86-93

Views: 966


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)