The effect of insulin resistance on amygdale glucose metabolism alterations in experimental Alzheimer’s disease
https://doi.org/10.20538/1682-0363-2017-4-106-115
Abstract
Purpose. Glucose metabolism is tightly regulated in the brain. Aberrant glucose metabolism is an important feature of neurodegenerative diseases, as inAlzheimer’s disease. The transport of glucose to the cell membrane is realized through the activity of insulin-regulated aminopeptidase (IRAP) which controls transfer of glucose transporter to the plasma membrane. IRAP is considered as one of the key markers of insulin resistance in Alzheimer’s disease. However, the question of the mechanism of the action of the IRAP remains open. The aim of the study was to study the effect of IRAP expression on cells of the neuronal and glial lineage, glucose transporter (GLUT4) expression in the brain amygdala on emotional memory in animals with experimental Alzheimer’s disease.
Materials and methods. The study was performed with two experimental models of Alzheimer’s disease in mice. The experimental group was mice of the CD1 line, males aged 4 months (Alzheimer’s disease model with the intra-hippocampal administration of beta-amyloid 1-42 (1 µl) bilaterally in the CA1 area). The control group was mice of the CD1 line, males aged 4 months (sham-operated animals with the intrahippocampal administration of Phosphate buffered salin (1 µl) bilaterally in the CA1). The genetic model of Alzheimer’s disease is the B6SLJ-Tg line mice (APPSwFlLon, PSEN1*M146L*L286V) 6799Vas, males aged 4 months. The control group consisted of C57BL/6xSJL mice, males aged 4 months. Evaluation of emotional memory was carried out using “Fear conditioning” protocol. Expression of molecule-markers of insulin-resistance in the amygdala was studied by immunohistochemistry followed by confocal microscopy.
Results. Aberrant associative learning and emotional memory was revealed in animals with an experimental model of Alzheimer’s disease. A decrease (p ≤ 0,05) of IRAP expression on cells of neuronal and glial nature, associated with GLUT4 down-regulation was detected in amygdala of brain in animals with experimental Alzheimer’s disease.
Conclusion. Decreased number of IRAP-immunopositive neuronal and astroglial cells, as well as IRAP+/ GLUT4+ in cells of amygdala in animals with an experimental model of Alzheimer’s disease, indicates the development of insulin resistance in amygdala of brain, which was in correlation with the hippocampus in performing cognitive functions and memorizing associated with emotionally colored events.
About the Authors
Ya. V. GorinaRussian Federation
PhD, Associate Professor, Department of Biological Chemistry with Courses of Medical, Pharmaceutical and Toxicological Chemistry
1, Partizan Zheleznyak Str., Krasnoyarsk, 660022
Yu. K. Komleva
Russian Federation
PhD, Associate Professor, Department of Biological Chemistry with Courses of Medical, Pharmaceutical and Toxicological Chemistry
1, Partizan Zheleznyak Str., Krasnoyarsk, 660022
O. L. Lopatina
Russian Federation
PhD, Associate Professor, Department of Biological Chemistry with Courses of Medical, Pharmaceutical and Toxicological Chemistry
1, Partizan Zheleznyak Str., Krasnoyarsk, 660022
A. I. Chernykh
Russian Federation
Surgeon
12A, Instrumental Str., Krasnoyarsk, 660123
A. B. Salmina
Russian Federation
DM, Professor, Head of the Department of Biological Chemistry with Courses of Medical, Pharmaceutical and Toxicological Chemistry, Head
Research Institute of Molecular Medicine and Pathological Biochemistry
1, Partizan Zheleznyak Str., Krasnoyarsk, 660022
References
1. Hane F.T., Robinson M., Lee B.Y., Bai O., Leonenko Z., Albert M.S. Recent Progress in Alzheimer’s Disease Research, Part 3: Diagnosis and Treatment // J. Alzheimers. Dis. 2017; 57 (3): 645–665. DOI: 10.3233/jad-160907.
2. Schain M., Kreisl W.C. Neuroinflammation in Neurodegenerative Disorders-a Review // Curr. Neurol. Neurosci. Rep. 2017; 17 (3): 25. DOI: 10.1007/s11910-017-0733-2.
3. Nugent S., Castellano C.A., Bocti C., Dionne I., Fulop T., Cunnane S.C. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype? // Biogerontology. 2016; 17 (1): 241– 255. DOI: 10.1007/s10522-015-9595-7.
4. Riepe M.W., Walther B., Vonend C., Beer A.J. Drug-induced cerebral glucose metabolism resembling Alzheimer’s Disease: a case study // BMC Psychiatry. 2015; 15: 157. DOI: 10.1186/s12888-015-0531-9.
5. Calsolaro V., Edison P. Alterations in Glucose Metabolism in Alzheimer’s Disease // Recent. Pat. Endocr. Metab. Immun. Drug. Discov. 2016; 10 (1): 31–39.
6. Yeatman H., Albiston A., Chai S. Insulin-regulated aminopeptidase in astrocytes: Role in Alzheimer’s disease? // Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 2011; 7 (4): 668.
7. Keller S.R., Scott H.M., Mastick C.C., Aebersold R., Lienhard G.E. Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles // J. Biol. Chem. 1995; 270 (40): 23612–23618.
8. Bernstein H.G., Müller S., Dobrowolny H., Wolke C., Lendeckel U., Bukowska A., Keilhoff G., Becker A., Trübner K., Steiner J., Bogerts B. Insulin-regulated aminopeptidase immunoreactivity is abundantly present in human hypothalamus and posterior pituitary gland, with reduced expression in paraventricular and suprachiasmatic neurons in chronic schizophrenia // Eur. Arch. Psychiatry Clin. Neurosci. 2016. DOI: 10.1007/s00406-016-0757-7. [Epub ahead of print].
9. Li X., Wang H., Tian Y., Zhou S., Li X., Wang K., Yu Y. Impaired White Matter Connections of the Limbic System Networks Associated with Impaired Emotional Memory in Alzheimer’s Disease // Front Aging Neurosci. 2016; 8: 250. DOI: 10.3389/fnagi.2016.00250.
10. McDonald A.J., Mott D.D. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory // J. Neurosci. Res. 2017; 95 (3): 797–820. DOI: 10.1002/jnr.23709.
11. Chen Y., Lippincott-Schwartz J. Selective visualization of GLUT4 storage vesicles and associated Rab proteins using IRAP-pHluorin // Methods Mol. Biol. 2015; 1298: 173–179. DOI: 10.1007/978-1-4939-2569-8_14.
12. Fernando R.N., Albiston A.L., Chai. S.Y. The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus – potential role in modulation of glucose uptake in neurones? // Eur. J. Neurosci. 2008; 28: 588–598. DOI: 10 .1111 /j.1460 -9568 .2008.06347.x.
13. Yeh T.Y., Sbodio J.I., Tsun Z.Y., Luo B., Chi N.W. Insulin-stimulated exocytosis of GLUT4 is enhanced by IRAP and its partner tankyrase // Biochem. J. 2007; 402 (2): 279–290. DOI: 10.1042/bj20060793.
14. Shah K., Desilva S., Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer’s Disease // Int. J. Mol. Sci. 2012; 13 (10): 12629–12655. DOI: 10.3390/ijms131012629.
15. Albiston A.L., Diwakarla S., Fernando R.N., Mountford S.J., Yeatman H.R, Morgan B., Pham V., Holien J.K., Parker M.W., Thompson P.E., Chai S.Y. Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers // Br. J. Pharmacol. 2011; 164 (1): 37–47. DOI: 10.1111/j.1476-5381.2011.01402.x.
16. Diwakarla S., Nylander E., Grönbladh A., Vanga S.R., Khan Y.S., Gutiérrez-de-Terán H., Ng L., Pham V., Sävmarker J., Lundbäck T., Jenmalm-Jensen A., Andersson H., Engen K., Rosenström U., Larhed M., Åqvist J., Chai S.Y., Hallberg M. Binding to and Inhibition of Insulin-Regulated Aminopeptidase by Macrocyclic Disulfides Enhances Spine Density // Mol. Pharmacol. 2016; 89 (4): 413–424. DOI: 10.1124/mol.115.102533.
17. Bernstein H.G., Müller S., Dobrowolny H., Wolke C., Lendeckel U., Bukowska A., Keilhoff G., Becker A., Trübner K., Steiner J., Bogerts B. Insulin-regulated aminopeptidase immunoreactivity is abundantly present in human hypothalamus and posterior pituitary gland, with reduced expression in paraventricular and suprachiasmatic neurons in chronic schizophrenia // Eur. Arch Psychiatry Clin Neurosci. 2016. DOI: 10.1007/s00406- 016-0757-7. [Epub ahead of print].
18. Loyens E., De Bundel D., Demaegdt H., Chai S.Y., Vanderheyden P., Michotte Y., Gard P., Smolders I.Antidepressant-like effects of oxytocin in mice are dependent on the presence of insulin-regulated aminopeptidase // Int. J. Neuropsychopharmacol. 2013; 16 (5): 1153–11563. DOI: 10.1017/s1461145712001149.
19. Paxinos G., Franklin K.B.J. The Mouse Brain in Stereotaxic Coordinates: Compact Second Edition. San Diego, CA: Academic Press, 2012: 360.
20. Epelbaum S., Youssef I., Lacor P.N., Chaurand P., Duplus E., Brugg B., Duyckaerts C., Delatour B. Acute amnestic encephalopathy in amyloid-β oligomer-injected mice is due to their widespread diffusion in vivo // Neurobiol Aging. 2015; 36 (6): 2043–2052. DOI: 10.1016/j.neurobiolaging.2015.03.005.
21. Комлева Ю.А., Малиновская Н.А., Горина Я.В., Лопатина О.Л., Волкова В.В., Салмина А.Б. Экспрессия молекул CD38 и CD157 в ольфакторных луковицах головного мозга при ýкспериментальной болезни Альцгеймера // Сибирское медицинское обозрение. 2015; 95 (5): 45–49.
22. Komleva Ju.K., Malinovskaia N.A., Gorina Ja.V., Lopatina O.L., Volkova V.V., Salmina A.B. Ehkspressiya molekul CD38 i CD157 v ol’faktornyh lukovicah golovnogo mozga pri ehksperimental’noj bolezni Al’cgejmera [Expression of CD38 and CD157 molecules in the olfactory bulb of the brain in experimental Alzheimer’s disease] // Sibirskoe medicinskoe obozrenie – Siberian Medical Review. 2014; 5: 45–49 (in Russian).
23. Lugo J.N., Smith G.D., Holley A.J. Trace fear conditioning in mice // J. Vis. Exp. 2014; Mar 20 (85). DOI: 10.3791/51180.
24. Горина Я.В., Комлева Ю.К., Лопатина О.Л., Волкова В.В., Черных А.И., Шабалова А.А., Семенчуков А.А., Оловянникова Р.Я., Салмина А.Б. Батарея тестов для поведенческого фенотипирования стареющих живот- ных в ýксперименте // Успехи геронтологии. 2017; 130 (1): 49–56.
25. Gorina Ja.V., Komleva Ju.K., Lopatina O.L., Volkova V.V., Chernyh A.I., Shabalova A.A., Semenchukov A.A., Olovjannikova R.Ja., Salmina A.B. Batareja testov dlja povedencheskogo fenotipirovanija starejushhih zhivotnyh v jeksperimente [The battery of tests for behavioral phenotyping of aging animals in the experiment] // Uspehi gerontologii – Successes of Gerontology. 2017; 1: 49–56 (in Russian).
26. Encinas J.M., Enikolopov G. Identifying and Quantitating Neural Stem and Progenitor Cells in the Adult Brain // Methods Cell Biol. 2008; 85 (1): 243–272. DOI: 10.1016/ s0091-679x(08)85011-x.
27. Jurcovicova J. Glucose transport in brain – effect of inflammation // Endocr Regul. 2014; 48 (1): 35–48.
28. Vannucci S.J., Koehler-Stec E.M., Li K., Reynolds T.H., Clark R., Simpson I.A. GLUT4 glucose transporter expression in rodent brain: effect of diabetes // Brain Res. 1998; 797 (1): 1–11.
29. Keller S.R., Davis A.C., Clairmont K.B. Mice deficient in the insulin-regulated membrane aminopeptidase show substantial decreases in glucose transporter GLUT4 levels but maintain normal glucose homeostasis // J. Biol. Chem. 2002; 277 (20): 17677–17686. DOI: 10.1074/jbc. M202037200.
30. Jordens I., Molle D., Xiong W., Keller S.R., McGraw T.E. Insulin-regulated aminopeptidase is a key regulator of GLUT4 trafficking by controlling the sorting of GLUT4 from endosomes to specialized insulin-regulated vesicles // Mol. Biol. Cell. 2010; 21 (12): 2034–2044. DOI: 10.1091/mbc.E10-02-0158.
31. Yeatman H.R., Albiston A.L., Burns P., Chai S.Y. Forebrain neurone-specific deletion of insulin-regulated aminopeptidase causes age related deficits in memory // Neurobiol Learn Mem. 2016; 136: 174–182. DOI: 10.1016/j.nlm.2016.09.017.
32. Xu B., Li H. Brain mechanisms of sympathetic activation in heart failure: Roles of the renin-angiotensin system, nitric oxide and pro-inflammatory cytokines (Review) // Mol. Med. Rep. 2015; 12(6): 7823–7829. DOI: 10.3892/ mmr.2015.4434.
33. Wright J.W., Kawas L.H., Harding J.W. The development of small molecule angiotensin IV analogs to treat Alzheimer’s and Parkinson’s diseases // Prog Neurobiol. 2015; 125: 26–46. DOI: 10.1016/j.pneurobio.2014.11.004.
34. Mateos L., Ismail M.A., Gil-Bea F.J., Leoni V., Winblad B., Björkhem I., Cedazo-Mínguez A. Upregulation of brain renin angiotensin system by 27-hydroxycholesterol in Alzheimer’s disease // J. Alzheimers Dis. 2011; 24 (4): 669–679. DOI: 10.3233/jad-2011-101512.
35. Mateos L.,. Akterin S., Gil-Bea F.J., Spulber S., Rahman A., Björkhem I., Schultzberg M., Flores-Morales A., Cedazo-Mínguez A. Activityregulated cytoskeleton-associated protein in rodent brain is downregulated by high fat diet in vivo and by 27-hydroxycholesterol in vitro // Brain Pathol. 2009; 19 (1): 69–80. DOI: 10.1111/j.1750- 3639.2008.00174.x.
36. Chai S.Y., Yeatman H.R., Parker M.W., Ascher D.B., Thompson P.E., Mulvey H.T., Albiston A.L. Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase // BMC Neurosci. 2008; 9 Suppl 2: S14. DOI: 10.1186/1471-2202-9-S2-S14.
Review
For citations:
Gorina Ya.V., Komleva Yu.K., Lopatina O.L., Chernykh A.I., Salmina A.B. The effect of insulin resistance on amygdale glucose metabolism alterations in experimental Alzheimer’s disease. Bulletin of Siberian Medicine. 2017;16(4):106-115. (In Russ.) https://doi.org/10.20538/1682-0363-2017-4-106-115