Preview

Bulletin of Siberian Medicine

Advanced search

Direct comparison of cardioprotective effects of necroptosis inhibitors against global ischemia-reperfusion in the isolated rat heart

https://doi.org/10.20538/1682-0363-2017-4-126-133

Abstract

The study was aimed at comparative assessment of cardioprotective properties of various necroptosis inhibitors in the isolated perfused rat heart subjected to global ischemia-reperfusion.

Materials and Methods. The study was performed on 38 male Wistar rats weighting 250–300 g. The following necroptosis inhibitors were tested: necrostatin-1 (Nec-1), necrostatin-5 (Nec-5), necrostatin-1s (Nec1s), and necrosulfonamide (NSA). All tested substances were administered intraperitoneally (i.p.) 1 hour prior to heart perfusion. Control animals were treated either with the vehicle (dimethyl sulfoxide, DMSO) or with 0,9% sodium chloride solution (Controls). The dose of necroptosis inhibitors was calculated on the basis of effective concentration (EC50) data. One hour after i.p. injection, the animals were anesthetized, the hearts were rapidly excised, the aorta was cannulated and retrogradely perfused according to Langendorff. After stabilization, the perfusion was stopped for 35 minutes, which was followed by 2 hours of reperfusion. Prior to stabilization, fluid-filled polyethylene balloon was placed into the left ventricle for left ventricular pressure registration. Coronary flow was measured at baseline and during reperfusion by means of perfusate collection. The volume of necrotic myocardium was expressed as a percentage of triphenyltetrazolium chloride-negative tissue relative to the entire heart volume.

Results. The volume of myocardial necrosis and functional heart parameters were not different between Controls and DMSO group. All tested necroptosis inhibitors demonstrated infarct-limiting effect. However, there were no differences between the groups. The volume of necrotic myocardium was (50,5 ± 7,82)%, (29,9 ± 3,42)%, (27,7 ± 3,42)%, (30,6 ± 3,82)%, and (34,7 ± 5,82)% in DMSO, Nec-1, Nec-5, Nec-1s, and NSA groups, respectively (p < 0,01 vs. DMSO group).

Nec-1s and NSA were shown to improve functional recovery of the heart after ischemia. In particular, left ventricular developed pressure and coronary flow rate were higher in Nec-1s and NSA groups (p < 0,01 compared with Controls and DMSO), while end-diastolic pressure was lower in Nec-1s and NSA groups vs. Controls and DMSO (p < 0,01).

Conclusions. It has been shown that Nec-1, Nec-5, Nec-1s, and NSA administration prior to global ischemiareperfusion results in comparable infarct size limitation. In addition to infarct size limitation, Nec-1s and NSA are able to improve postischemic left ventricular function. This fact, along with low toxicity and optimal EC50, makes Nec-1s and NSA perspective candidates for preclinical and clinical development as cardioprotective agents. 

About the Authors

Yu. V. Dmitriev
Federal Almazov North-West Medical Research Centre
Russian Federation

Junior Researcher, Institute of Experimental Medicine

2, Str. Accuratova, St.-Petersburg, 197341



S. M. Minasian
Federal Almazov North-West Medical Research Centre
Russian Federation

Senior Researcher, Institute of Experimental Medicine

2, Str. Accuratova, St.-Petersburg, 197341



V. K. Bayrasheva
Federal Almazov North-West Medical Research Centre
Russian Federation

Researcher, Institute of Endocrinology

2, Str. Accuratova, St.-Petersburg, 197341



E. A. Demchenko
Federal Almazov North-West Medical Research Centre
Russian Federation

Head of the Rehabilitation Laboratory

2, Str. Accuratova, St.-Petersburg, 197341



M. M. Galagudza
Federal Almazov North-West Medical Research Centre
Russian Federation

Director of the Institute of Experimental Medicine

2, Str. Accuratova, St.-Petersburg, 197341



References

1. Writing Group Members, Mozaffarian D., Benjamin E., Go A., Arnett D., Blaha M., Cushman M., Das S., de Ferranti S., Després J., Fullerton H., Howard V., Huffman M., Isasi C., Jiménez M., Judd S., Kissela B., Lichtman J., Lisabeth L., Liu S., Mackey R., Magid D., McGuire D., Mohler E., Moy C., Muntner P., Mussolino M., Nasir K., Neumar R., Nichol G., Palaniappan L., Pandey D., Reeves M., Rodriguez C., Rosamond W., Sorlie P., Stein J., Towfighi A., Turan T., Virani S., Woo D., Yeh R., Turner M. Executive Summary: Heart Disease and Stroke Statistics--2016 Update: A Report From the American Heart Association // Circulation. 2016; 133: 447–454. DOI: 10.1161/CIR.0000000000000366

2. Holly T., Drincic A., Byun Y., Nakamura S., Harris K., Klocke F., Cryns V. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo // J. Mol. Cell Cardiol. 1999; 31 (9): 1709– 1715. DOI: 10.1006/jmcc.1999.1006.

3. Zhang Y., Kohler K., Xu J., Lu D., Braun T., Schlitt A., Buerke M., Müller-Werdan U., Werdan K., Ebelt H. Inhibition of p53 after acute myocardial infarction: Reduction of apoptosis is counteracted by disturbed scar formation and cardiac rupture // J. Mol. Cell Cardiol. 2011; 50 (3): 471–478. DOI: 10.1016/j.yjmcc.2010.11.006

4. Buss S., Muenz S., Riffel J., Malekar P., Hagenmueller M., Weiss C., Bea F., Bekeredjian R., Schinke-Braun M., Izumo S., Katus H., Hardt S. Beneficial effects of Mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction // J. Am. Coll Cardiol. 2009; 54 (25): 2435–2446. DOI: 10.1016/j.jacc.2009.08.031.

5. Wei C., Li H., Han L., Zhang L., Yang X. Activation of autophagy in ischemic postconditioning contributes to cardioprotective effects against ischemia/reperfusion injury in rat hearts // J. Cardiovasc. Pharmacol. 2013; 61 (5): 416–422. DOI: 10.1097/FJC.0b013e318287d501.

6. Nikoletopoulou V., Markaki M., Palikaras K., Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy // Biochimica et Biophysica Acta. 2013; 1833: 3448–3459. DOI: 10.1016/j.bbamcr.2013.06.001.

7. Nicotera P., Melino G. Regulation of the apoptosis– necrosis switch // Oncogene. 2004; 23: 2757–2765. DOI: 10.1038/sj.onc.1207559.

8. Degterev A., Huang Z., Boyce M., Li Y., Jagtap P., Mizushima N., Cuny G.D., Mitchison T.J., Moskowitz M.A., Yuan J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential in ischemic brain injury // Nat. Chem. Biol. 2005; 1 (2): 116–119. DOI: 10.1038/ nchembio711.

9. Degterev A., Hitomi J., Germscheid M., Ch’en I., Korkina O., Teng X., Abbott D., Cuny G., Yuan C., Wagner G., Hedrick S., Gerber S., Lugovskoy A., Yuan J. Identification of RIP1 kinase as a specific cellular target of necrostatins // Nat. Chem. Biol. 2008; 4 (5): 313–321. DOI: 10.1038/nchembio.83.

10. Smith C., Davidson S., Lim S., Simpkin J., Hothersall J., Yellon D. Necrostatin: A Potentially Novel Cardioprotective Agent? // Cardiovasc Drugs Ther. 2007; 21: 227– 233. DOI: 10.1007/s10557-007-6035-1.

11. Oerlemans M., Liu J., Arslan F., den Ouden K., van Middelaar B., Doevendans P., Sluijter J. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia–reperfusion in vivo // Basic Res. Cardiol. 2012; 107: 270. DOI: 10.1007/s00395- 012-0270-8.

12. Dmitriev Y., Minasian S., Demchenko E., Galagudza M. Necrostatin-5 limits infarct size in isolated rat heart // European Heart Journal. 2013; 34(suppl_1): Р55538. DOI: https://doi.org/10.1093/eurheartj/eht310.P5538.

13. Dmitriev Y., Minasian S., Dracheva A., Karpov A., Chefu S., Demchenko E., Galagudza M. Necrostatin 7 Limits Myocardial Infarct Size and Reduces Cardiac Remodeling After Permanent Coronary Occlusion in Rats // Circulation. 2014; 130: A17348.

14. Pavlovsky A., Lian D., Huang X., Yin Z., Haig A., Jevnikar A., Zhang Z. RIPK3-Mediated Necroptosis Regulates Cardiac Allograft Rejection // American Journal of Transplantation. 2014; 14: 1778–1790. DOI: 10.1111/ ajt.12779.

15. Dmitriev Y., Minasyan S., Vasina L., Demchenko E., Galagudza M. Effects of Inhibitors of Necroptosis and Autophagy on Morphofunctional Characteristics of the Myocardium during Static Cold Storage of Donor Rat Heart // Bulletin of Experimental Biology and Medicine. 2015; 159 (6): 792–795. DOI: 10.1007/s10517-015- 3078-3.

16. Zhaoa J., Jitkaewa S., Caia Z., Choksi S., Li Q., Luo J., Liu Z. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis // PNAS. 2012; 109 (14): 5322–5327. DOI: 10.1073/pnas.1200012109.

17. Linkermann A., Green A. Necroptosis // N. Engl. J. Med. 2014; 370: 455–465. DOI: 10.1056/NEJMra1310050.

18. Shin Y., Kim J., Yang Y. Switch for the necroptotic permeation pore // Structure. 2014; 22 (10): 1374–1376. DOI: 10.1016/j.str.2014.09.002.

19. Wu J., Huang Z., Ren J., Zhang Z., He P., Li Y., Ma J., Chen W., Zhang Y., Zhou X., Yang Z., Wu S.Q., Chen L., Han J. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis // Cell Res. 2013; 23: 994–1006. DOI: 10.1038/cr.2013.91.

20. Qu Y., Shi J., Tang Y., Zhao F., Li S., Meng J., Tang J., Lin X., Peng X., Mu D. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain // Experimental Neurology Volume. 2016; 279: 223–231. DOI: 10.1016/j.expneur.

21. Sun L., Wang H., Wang Z., He S., Chen S., Liao D., Wang L., Yan J., Liu W., Lei X., Wang X. Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase // Cell. 2012; 148: 213–227. DOI: 10.1016/j.cell.2011.11.031.


Review

For citations:


Dmitriev Yu.V., Minasian S.M., Bayrasheva V.K., Demchenko E.A., Galagudza M.M. Direct comparison of cardioprotective effects of necroptosis inhibitors against global ischemia-reperfusion in the isolated rat heart. Bulletin of Siberian Medicine. 2017;16(4):126-133. (In Russ.) https://doi.org/10.20538/1682-0363-2017-4-126-133

Views: 1011


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)