Preview

Bulletin of Siberian Medicine

Advanced search

Characteristics of dendritic cells from patients with rheumatoid arthritis and different type of drug therapy

https://doi.org/10.20538/1682-0363-2017-4-195-206

Abstract

Purpose of the study. Comparative study of the phenotypic and functional properties of dendritic cells (DC) in groups of patients with rheumatoid arthritis (RA) receiving disease-modifying drugs, or biological drugs and (or) pulse therapy with high doses of glucocorticoids.

Materials and methods. The study included 39 patients with RA and 20 age-appropriate and semihealthy donors. Nineteen patients were treated with standard disease-modifying drugs (BMP) in the form of monotherapy or in combination (group PA1) at the time of the examination, 20 – biological preparations or pulse-therapy with glucocorticoids (group PA2). In the latter case, the examination was carried out for 2–7 days after the last injection of methylprednisolone.

Results. In this study, the properties of DC generated from monocytes under the action of IFN-α (IFN-DK) for RA are described for the first time. It has been established that the general feature of DC in the PA1 and PA2 groups are signs of immaturity of the DC, manifested by increased CD14 expression and a decrease in the proportion of mature (CD14-CD83 +) DC. Despite the differences in DC in the PA1 and PA2 groups, both cell types retain in vitro sensitivity to dexamethasone, the treatment of which leads to a significant inhibition of TNF-α production and a decrease in allostimulant activity of the DC. Thus, IFN-DK in RA patients receiving medical therapy is characterized by the presence of tolerogenic properties, which are most pronounced when used in a program of treatment of biological agents or pulse therapy with corticosteroids. 

About the Authors

Yu. D. Kurochkina
Scientific Institution Research Institute of Fundamental and Clinical Immunology
Russian Federation

Postgraduate Student, Laboratory of Cellular Immunotherapy, Doctor-rheumatologist, Clinic of Immunopathology

14, Yadrintsevskaya Str., Novosibirsk, 630099



M. A. Tikhonova
Scientific Institution Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD, Superior Researcher, Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



T. V. Tyrinova
Scientific Institution Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD, Researcher, Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



O. Yu. Leplina
Scientific Institution Research Institute of Fundamental and Clinical Immunology
Russian Federation

DM, Leading Researcher, Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



A. E. Sizikov
Scientific Institution Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD, Head of Rheumatology Department, Clinic of Immunopathology

14, Yadrintsevskaya Str., Novosibirsk, 630099



A. E. Sulutian
Scientific Institution Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD, Doctor-rheumatologist of the Rheumatology Department, Clinic of Immunopathology

14, Yadrintsevskaya Str., Novosibirsk, 630099



L. P. Konenkova
Scientific Institution Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD, Doctor-rheumatologist of the Rheumatology Department, Clinic of Immunopathology

14, Yadrintsevskaya Str., Novosibirsk, 630099



O. A. Chumasova
Scientific Institution Research Institute of Fundamental and Clinical Immunology
Russian Federation

PhD, Doctor-rheumatologist of the Rheumatology Department, Clinic of Immunopathology

14, Yadrintsevskaya Str., Novosibirsk, 630099



A. A. Ostanin
Scientific Institution Research Institute of Fundamental and Clinical Immunology
Russian Federation

DM, Professor, Main Researcher, Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



E. R. Chernykh
Scientific Institution Research Institute of Fundamental and Clinical Immunology
Russian Federation

DM, Рrofessor, Corresponding Member of the Russian Academy of Sciences, Head of the Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



References

1. Tsark E.C., Wang W., Teng Y.C., Arkfeld D., Dodge G.R., Kovats S. Differential MHC class II-mediated presentation of rheumatoid arthritis autoantigens by human dendritic cells and macrophages // J. Immunol. 2002; 169 (11): 6625–6633. DOI: 10.4049/jimmunol.169.11.6625.

2. Wenink M.H., Han W., Toes R.E., Radstake T.R. Dendritic cells and their potential implication in pathology and treatment of rheumatoid arthritis // Handb. Exp. Pharmacol. 2009; 188: 81–98. DOI: 10.1007/978-3-540- 71029-5_4.

3. Khan S., Greenberg J.D., Bhardwaj N. Dendritic cells as targets for therapy in rheumatoid arthritis. Nat. Rev.Rheumatol. 2009; 5 (10): 566–571. DOI: 10.1038/ nrrheum.2009.185.

4. Liu J., Cao X. Regulatory dendritic cells in autoimmunity: a comprehensive review // J. Autoimmun. 2015; 63: 1–12. DOI: 10.1016/j.jaut.2015.07.011.

5. Thomas R., MacDonald K.P., Pettit A.R., Cavanagh L.L., Padmanabha J., Zehntner S. Dendritic cells and the pathogenesis of rheumatoid arthritis // J. Leukoc. Biol. 1999; 66 (2): 286–292. PMID: 10449169.

6. Santiago-Schwarz F., Anand P., Liu S., Carsons S.E. Dendritic cells (DCs) in rheumatoid arthritis (RA): progenitor cells and soluble factors contained in RA synovial fluid yield a subset of myeloid DCs that preferentially activate Th1 inflammatory-type responses // J. Immunol. 2001; 167 (3): 1758–1768. DOI: 10.4049/jimmunol.167.3.1758.

7. Chen K., Wang J.M., Yuan R., Yi X., Li L., Gong W., Yang T., Li L., Su S. Tissue-resident dendritic cells and diseases involving dendritic cell malfunction // Int. Immunopharmacol. 2016; 34: 1–15. DOI: 10.1016/j.intimp.2016.02.007.

8. Hilkens C.M.U., Isaacs J.D. Tolerogenic dendritic cells in clinical practice // Open Arthritis Journal. 2010; 3: 8–12. DOI: 10.2174/1876539401003010008.

9. Torres-Aguilar H., Aguilar-Ruiz S.R., Gonzalez-Perez G., Munguia R., Bajaсa S., Meraz-Rios M.A., Sanchez-Torres C. Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4+ T cells // J. Immunol. 2010; 184 (4): 1765–1775. DOI: 10.4049/jimmunol.0902133.

10. Yu X., Wang C., Luo J, Zhao X., Wang L., Li X. Combination with methotrexate and cyclophosphamide attenuated maturation of dendritic cells: inducing Treg skewing and Th17 suppression in vivo // Clin. Dev. Immunol. 2013; 2013: 238035. DOI: 10.1155/2013/238035.

11. Piemonti L., Monti P., Allavena P., Sironi M., Soldini L., Leone B.E., Socci C.,Di Carlo V.. Glucocorticoids affect human dendritic cell differentiation and maturation // J. Immunol. 1999; 162 (11): 6473–6481.

12. Xia C.Q., Peng R., Beato F., Clare-Salzler M.J. Dexamethasone induces IL-10-producing monocyte-derived dendritic cells with durable immaturity // Scand. J. Immunol. 2005; 62 (1): 45–54. DOI: 10.1111/j.1365- 3083.2005.01640.x.

13. León B., Ardavín C. Monocyte-derived dendritic cells in innate and adaptive immunity // Immunol. Cell. Biol. 2008; 86 (4): 320–324. DOI: 10.1038/icb.2008.

14. Epub 2008 Mar 25. 14. Gessani S., Conti L., Del Cornò M., Belardelli F. Type I interferons as regulators of human antigen presenting cell functions // Toxins (Basel). 2014; 6 (6): 1696–1723. DOI: 10.3390/toxins6061696.

15. Runnblom L., Eloranta M.L. The interferon signature in autoimmune diseases // Curr. Opin. Rheumatol. 2013; 25 ( 2): 248–253. DOI: 10.1097/BOR.0b013e32835c7e32.

16. Rodriguez-Carrio J., de Paz B., Lуpez P., Prado C., Alperi-Lуpez M., Ballina-Garcнa F.J., Suarez A. IFNα serum levels are associated with endothelial progenitor cells imbalance and disease features in rheumatoid arthritis patients // PLoS One. 2014; 9 (1): e86069. DOI: 10.1371/journal.pone.0086069.

17. Miossec P., Naviliat A., Duput-dAngeac A., Sany J., Banchereau J. Low levels of interleukin-4 and high levels of transforming growth factor beta in rheumatoid synovitis // Arthr. Rheum. 1999; 33: 1180–1187. DOI: 10.1002/art.1780330819.

18. Chen E., Keystone E.C., Fish E.N. Restricted cytokine expression in rheumatoid arthritis // Arthritis Rheum. 1993; 36 (7): 901–910. PMID:8318038.

19. Prevoo M.L., van ‘t Hof M.A., Kuper H.H., van Leeuwen M.A., van de Putte L.B., van Riel P.L. Modified disease activity scores that include twenty-eight-joint counts.Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis // Arthritis Rheum. 1995;38 (1):44–8. DOI: http://dx.doi. org/10.1002/art.1780380107.

20. Курочкина Ю.Д., Леплина О.Ю., Тихонова М.А., Тыринова Т.В., Баторов Е.В., Сизиков А.Э., Оста- нин А.А., Черных Е.Р. Влияние дексаметазона на интерферон-α- индуцированную дифференцировку моноцитов в дендритные клетки // Медицинская им- мунология. 2016; 18 (4): 347–356. DOI: 10.15789/1563- 0625-2016-4-347-356. Kurochkina Y.D., Leplina O.Y., Tikhonova M.A., Tyrinova T.V., Batorov E.V., Sizikov A.E., Ostanin A.A., Chernykh E.R. Effect of dexamethasone on interferon-α-induced differentiation of monocytes to dendritic cells // Medical Immunology (Russia). 2016; 18 (4): 347–356 (in Russian). DOI: 10.15789/1563-0625-2016-4-347-356.

21. Rutella S., De Cristofaro R., Ferraccioli G. Function and dysfunction of dendritic cells in autoimmune rheumatic diseases // Hum. Immunol. 2009; 70: 360–373. PMID: 19405176.

22. Broder A., Chan J.J., Putterman C. Dendritic cells: an important link between antiphospholipid antibodies, endothelial dysfunction, and atherosclerosis in autoimmune and non-autoimmune diseases // Clin. Immunol. 2013; 146 (3): 197–206. DOI: 10.1016/j.clim.2012.12.002.

23. Wenink M.H., Han W., Toes R.E., Radstake T.R. Dendritic cells and their potential implication in pathology and treatment of rheumatoid arthritis // Handb. Exp Pharmacol. 2009; 188: 81–98. DOI: 10.1007/978-3-540-71029-5_4.

24. García-González P.A., Schinnerling K., Sepúlveda-Gutiérrez A., Maggi J., Hoyos L., Morales R.A., Mehdi A.M., Nel H.J., Soto L., Pesce B., Molina M.C., Cuchacovich M., Larrondo M.L., Neira Ó., Catalán D.F., Hilkens C.M., Thomas R., Verdugo R.A., Aguillón J.C. Treatment with dexamethasone and monophosphoryl lipid a removes disease-associated transcriptional signatures in monocyte-derived dendritic cells from rheumatoid arthritis patients and confers tolerogenic features // Front. Immunol. 2016; 7: 458. eCollection 2016.

25. Balanescu A., Radu E., Nat R., Regalia T., Bojinca V., Ionescu R., Balanescu S., Savu C., Predeteanu D. Early and late effect of infliximab on circulating dendritic cells phenotype in rheumatoid arthritis patients // Int. J. Clin. Pharmacol. Res. 2005; 25 (1): 9–18. PMID: 15864873.

26. Wehner R., Bitterlich A., Meyer N., Kloß A., Schäkel K., Bachmann M., Schmitz M. Impact of chemotherapeutic agents on the immunostimulatory properties of human 6-sulfo LacNAc+ (slan) dendritic cells // Int. J. Cancer. 2013; 132 (6): 1351–1359. DOI: 10.1002/ijc.27786.

27. Raker V.K., Domogalla M.P., Steinbrink K. Tolerogenic dendritic cells for regulatory T cell induction in man // Front. Immunol. 2015; 6: 569. DOI: 10.3389/fimmu.2015.00569.

28. Chamorro S. TLR triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program // J. Immunol. 2009; 183 (5): 2984–2994. DOI: 10.4049/jimmunol.0801155.

29. Radstake T.R., Nabbe K.C., Wenink M.H., Roelofs M.F., Oosterlaar A., van Lieshout A.W., Barrera P., van Lent P.L., van den Berg W.B. Dendritic cells from patients with rheumatoid arthritis lack the interleukin 13 mediated increase of FcRII expression, which has clear functional consequences // Ann. Rheum. Dis. 2005; 64: 1737–1743. DOI: 10.1136/ard.2004.034405.

30. Harry R.A., Anderson A.E., Isaacs J.D., Hilkens C.M. Generation and characterization of therapeutic tolerogenic dendritic cells for rheumatoid arthritis // Ann. Rheum. Dis. 2010; 69 (11): 2042–2050. DOI: 10.1136/ ard.2009.126383.

31. Estrada-Capetillo L., Hernandez-Castro B., MonsivaisUrenda A., Alvarez-Quiroga C., Layseca-Espinosa E., Abud-Mendoza C., Baranda L., Urzainqui А., Sanchez-Madrid F., Gonzalez-Amaro R. Induction of Th17 lymphocytes and Treg cells by monocyte-derived dendritic cells in patients with rheumatoid arthritis and systemic lupus erythematosus // Clin. Dev. Immunol. 2013; 2013, Article ID 584303, 9. DOI: 10.1155/2013/584303.

32. Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J., Liu Y.J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood // Blood. 2010;116: e74–e80. DOI: 10.1182/blood2010-02-258558.

33. Sprangers S., de Vries T.J., Everts V. Monocyte heterogeneity: consequences for monocyte-derived immune cells // Journal of Immunology Research. 2016; Article ID 1475435, 10.

34. Balboa L., Romero M.M., Laborde E. et al. Impaired dendritic cell differentiation of CD16-positive monocytes in tuberculosis: role of p38 MAPK // European Journal of Immunology. 2013; 43 (2); 335–347. DOI: 10.1002/eji.201242557.

35. Rossol M., Kraus S., Pierer M., Baerwald C., Wagner U. The CD14(bright) CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population // Arthritis Rheum. 2012; 64: 671–677. DOI: 10.1002/art.33418.

36. Radwan W.M. , Khalifa R.A., Esaily H.A., Lashin N.A. CD14++CD16+ monocyte subset expansion in rheumatoid arthritis patients: Relation to disease activity and interleukin-17 // The Egyptian Rheumatologist. 2016; 38 (3): 161–169. http://dx.doi.org/10.1016/j.ejr.2015.12.002.

37. Cooper D.L., Martin S.G., Robinson J.I., Mackie S.L., Charles C.J., Nam J., Consortium Y., Isaacs J.D., Emery P., Morgan A.W. FcgammaRIIIa expression on monocytes in rheumatoid arthritis: role in immune-complex stimulated TNF production and non-response to methotrexate therapy // PLoS ONE. 2012;7:e28918. DOI: 10.1371/journal.pone.0028918.

38. Liu B., Dhanda A., Hirani S., Williams E.L., Sen H.N., Martinez Estrada F., Ling D., Thompson I., Casady M., Li Z., Si H., Tucker W., Wei L., Jawad S., Sura A., Dailey J., Hannes S., Chen P., Chien J.L., Gordon S., Lee R.W., Nussenblatt R.B. CD14++CD16+ Monocytes are enriched by glucocorticoid treatment and are functionally attenuated in driving effector T-cell responses // J. Immunol. 2015; 194 (11): 5150–5160. DOI: 10.4049/jimmunol. 1402409.

39. Chara L., Sánchez-Atrio A., Pérez A., Cuende E., Albarrán F., Turrión A., Chevarria J., Sánchez M.A., Monserrat J., de la Hera A., Prieto A., Sanz I., Diaz D., Alvarez-Mon M. Monocyte populations as markers of response to adalimumab plus MTX in rheumatoid arthritis // Arthritis Res. Ther. 2012; 14 (4): R175. DOI: 10.1186/ar3928.

40. Randolph G.J., Beaulieu S., Lebecque S., Steinman R.M., Muller W.A. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking // Science. 1998; 282: 480–483.

41. Farkas A., Kemény L. Interferon-α in the generation of monocyte-derived dendritic cells: recent advances and implications for dermatology // Br. J. Dermatol. 2011; 165 (2): 247-54. DOI: 10.1111/j.1365-2133.2011.10301.x.


Review

For citations:


Kurochkina Yu.D., Tikhonova M.A., Tyrinova T.V., Leplina O.Yu., Sizikov A.E., Sulutian A.E., Konenkova L.P., Chumasova O.A., Ostanin A.A., Chernykh E.R. Characteristics of dendritic cells from patients with rheumatoid arthritis and different type of drug therapy. Bulletin of Siberian Medicine. 2017;16(4):195-206. (In Russ.) https://doi.org/10.20538/1682-0363-2017-4-195-206

Views: 916


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)