Preview

Bulletin of Siberian Medicine

Advanced search

Phenomenon of loss of heterozygosity in tumour tissue of breast cancer: association with expression of monoresistance genes

https://doi.org/10.20538/1682-0363-2017-4-250-259

Abstract

Purpose of work. To perform a genome-wide association study of loss of heterozygosity (LOH) with monoresistance genes expression during neoadjuvant chemotherapy (NAC) in breast cancer.

Materials and methods. The study involved 68 patients with breast cancer. The tumour stages were IIAIIIB. RNA was extracted from tissue specimens (before and after NAC) using RNeasy Plus mini Kit (Qiagen, Germany). Expression profiling of the RRM1, ERCC1, TOP1, TOP2a, TUBB3, TYMS, BRCA1 genes was carried out using quantitative real-time PCR (qPCR). DNA was extracted from 68 biopsy specimens of tumour tissues using QIAamp DNA mini Kit (Qiagen, Germany). LOH status was detected using microarray analysis using high density DNA-chip manufactured by Affymetrix CytoScanTM HD Array company.

Results. As a result of the study of loss of heterozygosity was evaluated in 13815 genes. The frequency of LOH varied from 0% to 63%. The highest incidence of heterozygosity loss events is characteristic for genes of 16, 17 and the X-chromosome. Our study established that the phenomenon of loss of heterozygosity in monoresistance genes (BRCA1, ERCC1, RRM1, TOP1, TOP2A, TUBB3 and TYMS), is not associated with their level of expression in the tumor. A statistical association has been found between LOH and level of expression of the studied genes in 54 genes. Among them it is necessary to note genes encoding miRNA and «zinc fingers» involved in the regulation of transcription of many genes, transmembrane drug transporters and ion channels, genes of the MAP kinase signaling pathway, and others.

Conclusion. The results of this study allow for the more exact determination of the expression picture of monoresistance genes in the tumor and the indication of new candidate genes which are involved in the regulation of the expression of these genes. Evaluation of the loss of heterozygosity in tumor tissue can be used as an additional criterion for personalizing chemotherapy. 

About the Authors

M. M. Tsyganov
Cancer Research Institute, Tomsk National Research Medical Center (TNRMC) of Russian Academy of Sciences (RAS)
Russian Federation

PhD, Junior Researcher, Laboratory of Oncovirology

5, Kooperativny Str., Tomsk, 634050



I. V. Deryusheva
Cancer Research Institute, Tomsk National Research Medical Center (TNRMC) of Russian Academy of Sciences (RAS)
Russian Federation

Junior Researcher, Laboratory of Oncovirology

5, Kooperativny Str., Tomsk, 634050



E. Yu. Garbukov
Cancer Research Institute, Tomsk National Research Medical Center (TNRMC) of Russian Academy of Sciences (RAS)
Russian Federation

PhD, Doctor, Senior Researcher, Department of General Oncology

5, Kooperativny Str., Tomsk, 634050



M. K. Ibragimova
Cancer Research Institute, Tomsk National Research Medical Center (TNRMC) of Russian Academy of Sciences (RAS); National Research Tomsk State University (NR TSU)
Russian Federation

Junior Researcher, Laboratory of Oncovirology

5, Kooperativny Str., Tomsk, 634050

36, Lenina Av., Tomsk, 634050



P. V. Kazantseva
Cancer Research Institute, Tomsk National Research Medical Center (TNRMC) of Russian Academy of Sciences (RAS)
Russian Federation

Junior Researcher, Department of General Oncology

5, Kooperativny Str., Tomsk, 634050



V. A. Bychkov
Cancer Research Institute, Tomsk National Research Medical Center (TNRMC) of Russian Academy of Sciences (RAS)
Russian Federation

PhD, Senior Researcher, Laboratory of Oncovirology

5, Kooperativny Str., Tomsk, 634050



E. M. Slonimskaya
Cancer Research Institute, Tomsk National Research Medical Center (TNRMC) of Russian Academy of Sciences (RAS); Siberian State Medical University (SSMU)
Russian Federation

DM, Professor, Head of the Department of General Oncology

5, Kooperativny Str., Tomsk, 634050

2, Moskow Trakt, Tomsk, 634050



N. V. Litviakov
Cancer Research Institute, Tomsk National Research Medical Center (TNRMC) of Russian Academy of Sciences (RAS); National Research Tomsk State University (NR TSU)
Russian Federation

DBSc, Head of the Laboratory Oncovirology

5, Kooperativny Str., Tomsk, 634050

36, Lenina Av., Tomsk, 634050



References

1. Tamura G. Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer // World Journal of Gastroenterology: WJG. 2006; 12: 192–198.

2. Knudson A.G. Mutation and cancer: statistical study of retinoblastoma // Proceedings of the National Academy of Sciences. 1971; 68: 820–823.

3. Chen Y., Chen C. DNA copy number variation and loss of heterozygosity in relation to recurrence of and survival from head and neck squamous cell carcinoma: a review // Head & Neck. 2008; 30: 1361–1383.

4. Silva J.M., Silva J., Sanchez A., Garcia J.M., Dominguez G., Provencio M., Sanfrutos L., Jareño E., Colas A., España P. Tumor DNA in plasma at diagnosis of breast can cer patients is a valuable predictor of disease-free survival // Clinical Cancer Research. 2002; 8: 3761–3766.

5. Ha G., Roth A., Khattra J., Ho J., Yap D., Prentice L.M., Melnyk N., McPherson A., Bashashati A., Laks E. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data // Genome Research. 2014; 24: 1881–1893.

6. Fleming J.L., Dworkin A.M., Allain D.C., Fernandez S., Wei L., Peters S.B., Iwenofu O.H., Ridd K., Bastian B.C., Toland A.E. Allele‐specific imbalance mapping identifies HDAC9 as a candidate gene for cutaneous squamous cell carcinoma // International Journal of Cancer. 2014; 134: 244–248.

7. Shikeeva A., Kekeeva T., Zavalishina L., Andreeva I., Frank G. Allelic imbalance in patients with non-small cell lung cancer // Arkhiv Patologii. 2012; 75: 3–8.

8. Staaf J., Jonsson G., Ringnér M., Baldetorp B., Borg A. Landscape of somatic allelic imbalances and copy number alterations in HER2-amplified breast cancer // Breast Cancer Res. 2011; 13: 129.

9. Timms K.M., Abkevich V., Hughes E., Neff C., Reid J., Morris B., Kalva S., Potter J., Tran T.V., Chen J. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes // Breast Cancer Research. 2014; 16: 475.

10. Shen J., Medico L., Zhao H. Allelic imbalance in BRCA1 and BRCA2 gene expression and familial ovarian cancer // Cancer Epidemiology Biomarkers & Prevention. 2011; 20: 50–56.

11. Kotoula V., Zagouri F., Timotheadou E., Alexopoulou Z., Wirtz R., Lyberopoulou A., Lakis S., Gogas H., Charalambous E., Pentheroudakis G. The clinical relevance of genomic characteristics in luminal A and B breast cancer (BC) // Annals of Oncology. 2014; 25: iv87–iv87.

12. Birkbak N.J., Wang Z.C., Kim J.-Y., Eklund A.C., Li Q., Tian R., Bowman-Colin C., Li Y., Greene-Colozzi A., Iglehart J.D. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents // Cancer Discovery. 2012; 2: 366–375.

13. Rosenberg C.L. Allele imbalance or loss of heterozygosity, in normal appearing breast epithelium as a novel biomarker to predict future breast cancer, 2011, DTIC Document.

14. Цыганов М.М., Родионов Е.О., Миллер С.В., Литвяков Н.В. Обоснование использования ýкспрессионных маркёров для персонализации химиотерапии рака лёгкого // Антибиотики и химиотерапия. 2015; 60: 38–45. Tsyganov M.M., Rodionov E.O., Miller S.V., Litvyakov N.V. Obosnovaniye ispol’zovaniya ekspressionnykh markorov dlya personalizatsii khimioterapii raka logkogo [Substantiation of Expressive Markers Use to Personalize Lung Cancer Chemotherapy] // Antibiotiki i khimioterapiya – Antibiotics and Chemoterapy. 2015; 60: 38–45 (in Russian).

15. Schwartz G.F., Hortobagyi G.N. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania // The Breast Journal. 2004; 10: 273–294.

16. Юмов Е.Л., Цыганов М.М., Литвяков Н.В., Полищук Т.В., Миллер С.В., Родионов Е.О., Тузиков С.А. Экспрессия генов множественной лекарственной устойчивости и монорезистентности при немелкоклеточном раке легкого // Сибирский онкологический журнал. 2013; 61: 16–22. Yumov E.L., Tsyganov М.М., Litviakov N.V., Polishchuk T.V., Miller S.V., Rodionov E.O., Tuzikov S.A. Ekspressiya genov mnozhestvennoy lekarstvennoy ustoychivosti i monorezistentnosti pri nemelkokletochnom rake legkogo [Exspression of MDR-genes and monoresistance genes in non-small-cell lung cancer] // Sibirskiy onkologicheskiy zhurnal – Siberian Journal of Oncology. 2013; 61: 16–22 (in Russian).

17. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT–PCR // Nucleic Acids Research. 2001; 29: e45-e45.

18. Kaplan E.L., Meier P. Nonparametric estimation from incomplete observations // Journal of the American Statistical Association. 1958; 53: 457–481.

19. Litviakov N.V., Cherdyntseva N.V., Tsyganov M.M., Slonimskaya E.M., Ibragimova M.K., Kazantseva P.V., Kzhyshkowska J., Choinzonov E.L. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy // Oncotarget. 2016; 7: 7829–7841.

20. Jönsson G., Staaf J., Vallon-Christersson J., Ringnér M., Holm K., Hegardt C., Gunnarsson H., Fagerholm R., Strand C., Agnarsson B.A. Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics // Breast Cancer Research. 2010; 12: 42.

21. Olivier M., Hollstein M., Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use // Cold Spring Harbor Perspectives in Biology. 2010; 2: a001008.

22. Alanee S., Shah S., Murali R., Rau-Murthy R., Schrader K.A., Offit K. Absence of loss of heterozygosity of BRCA1 in a renal tumor from a BRCA1 germline mutation carrier // Familial Cancer. 2013; 12: 125-127.

23. Roy R., Chun J., Powell S.N. BRCA1 and BRCA2: different roles in a common pathway of genome protection // Nature Reviews Cancer. 2012; 12: 68–78.

24. Ribeiro E., Ganzinelli M., Andreis D., Bertoni R., Giardini R., Fox S.B., Broggini M., Bottini A., Zanoni V., Bazzola L. Triple negative breast cancers have a reduced expression of DNA repair genes // PLoS One. 2013; 8: e66243.

25. Fletcher B., Dragstedt C., Notterpek L., Nolan G. Functional cloning of SPIN-2, a nuclear anti-apoptotic protein with roles in cell cycle progression // Leukemia. 2002; 16: 1507–1518.

26. Gersbach C.A., Gaj T., Barbas C.F. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies // Accounts of Chemical Research. 2014; 47: 2309–2318.

27. He Y., Winham S., Hoskins J., Glass S., Paul J., Brown R., Motsinger-Reif A., McLeod H. Carboplatin/taxane-induced gastrointestinal toxicity: a pharmacogenomics study on the Scotroc1 trial // The Pharmacogenomics Journal. 2015.

28. Liang Y., Li S., Chen L. The physiological role of drug transporters // Protein & Cell. 2015; 6: 334-350.

29. Ostertag E.M., Crawford J.S. Genetically Modified Rat Models for Pharmacokinetics, 2010, Google Patents.


Review

For citations:


Tsyganov M.M., Deryusheva I.V., Garbukov E.Yu., Ibragimova M.K., Kazantseva P.V., Bychkov V.A., Slonimskaya E.M., Litviakov N.V. Phenomenon of loss of heterozygosity in tumour tissue of breast cancer: association with expression of monoresistance genes. Bulletin of Siberian Medicine. 2017;16(4):250-259. (In Russ.) https://doi.org/10.20538/1682-0363-2017-4-250-259

Views: 860


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)