UVI-induced endogenous retrovirus HERV-E λ 4-1 expression in blood mononuclear cells
https://doi.org/10.20538/1682-0363-2018-1-36-44
Abstract
The influence of various environmental factors indirectly, through the epigenetic mechanisms of regulation of gene expression, can lead to the activation of human endogenous retroviruses. The purpose of this study was to investigate the possibility of activation of the first class HERV-E λ 4-1 (ER λ 4-1) endogenous retrovirus as a result of exposure to UV radiation in vitro.
Materials and methods. Blood mononuclear cells (MNCs) of conditionally healthy individuals in a concentration of 20 x 106/ml were exposed to UV irradiation for 5 minutes on an ultraviolet radiator at a wavelength of 340 nm and a radiation intensity of 50 W/m2 in vitro. After irradiation, the cell samples were cultured for 24 hours in a complete culture medium in a CO2 incubator. Then, in these cell culture samples the proliferative activity, based on the incorporation of tritium labeled thymidine, a viability, by the trypan blue staining, and ER-E λ 4-1 expression by the reverse transcriptase polymerase chain reaction method, were determined.
The main results. UV irradiation of mononuclear cell cultures for 5 minutes did not leads to the changes in their viability and functional activity. The study of the of the env ER λ 4-1 gene expression frequency in the MNC of donor’s blood before and after the exposure to UV radiation revealed the differences in this index. Thus, before the exposure to UV radiation, the expression rate of env ER-λ 4-1 was 4.4% (2/45), whereas after the irradiation its expression was determined much more often 24% (11/45). Along with an increase in the expression frequency, an augmentation in the mRNA level of the env gene ER-λ 4-1 was also observed.
Conclusion. Thus, the exposure to ultraviolet radiation with the intensity of 50 W/m2 for 5 minutes on blood mononuclear cells of conditionally healthy individuals in vitro leads to activation of the human endogenous retrovirus HERV-E λ 4-1: an increase of its expression frequency and the level of mRNA.
About the Authors
I. A. GoldinaRussian Federation
Goldina Irina A., Researcher, Regulation Immunopoiesis Laboratory.
14, Yadrincevskaya Str., Novosibirsk, 630099.
K. V. Gaidul
Russian Federation
Gaidul Konstantin V., DM, Professor, Head of the Regulation Immunopoiesis Laboratory.
14, Yadrincevskaya Str., Novosibirsk, 630099.
V. A. Kozlov
Russian Federation
Kozlov Vladimir А., DM, Professor, Academician of RAS, Scientific Head.
14, Yadrincevskaya Str., Novosibirsk, 630099.
References
1. Coffin J.M., Hughes S.H., Varmus H.E. Retroviruses. New York: Cold Spring Harbor Cold Spring Harbor Laboratory Press, 1997.
2. Koito A., Ikeda T. Intrinsinc immunity against retrotransposons by APOBEC cytidine deaminases. Frontiers in Microbiol. 2013; 4: 1–9.
3. Urnovitz H.B., Murphy W.H. Human endogenous Retroviruses: nature, occurrence, and clinical implications in human disease. Clin. Microbiol. Rev. 1996; 9 (1): 72–99.
4. Lee J.M., Choi J.Y., Kim J.S., Hyun B.H., Kim H.S. Identification and phylogeny of new human endogenous retroviral sequences belonging to the HERV – H family. AIDS Research Human Retroviruses. 2000; 16: 2055–2058.
5. De Parseval N., Heidmann T. Human endogenous retroviruses: from infectious elements to human genes. Cytogenet. Genome Res. 2005; 110: 318–332.
6. Prusty B.K., Hausen H., Schmidt R., Kimmel R., de Villiers E.-M. Transcription of HERV-E and HERV-E-related sequences in malignant and non-malignant human haemopoietic cells. Virology. 2008; 382: 37–45.
7. Escalera-Zamudio M., Greenwood A.D. On the classification and evolution of endogenous retrovirus: human endogenous retroviruses may not be ‘human’ after all. APMIS. 2016; 124 (1-2): 44–51. DOI: 10.1111/apm.12489.
8. Vargiu L., Rodriges-Tome P., Sperber G.O., Cadeddu M., Grandi N., Blikstad V., Tramontano E., Blomberg J. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology. 2016; 13: 7–36. DOI: 10.1186/s12977-015-0232-y.
9. Wilkinson D.A., Mager D.I., Leong J.A.C. Human endogenous retroviruses. In: Levy J.A. (ed.) The Retroviridae. New York: Plenium Press, 1994: 465–553.
10. Tristem M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J. Virology. 2000; 74: 3715–3730.
11. Gifford R., Tristem M. The evolution, distribution and diversity of endogenous retroviruses. Virus Genes. 2003; 26: 291–315.
12. Kwun H.J., Han H.J., Lee W.J., Kim H.S., Jang K.L. Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein. Virus Res. 2002; 86: 93–100.
13. Cedeno-Laurent F., Gomes-Flores M., Mendes N. New insight into HIV-1 primary skin disorders. J. Int. AIDS Soc. 2011; 14: 5–16.
14. Goldina I.A., Mitrofanov I.M., Pavlov V.V., Gaidul K.V. The mechanisms of endogenous retroviruses activation: Chlamydia Trachomatis superinfection. Rossiiskii immunologicheskii jurnal – Russian Journal of Immunology. 2013; 7 (16): 230 (in Russ.).
15. Goldina I.A., Pavlov V.V., Mitrofanov I.M., Gaidul K.V. Human endogenous retrovirus HERV-E λ 4-1 expression in coxae arthroplastic. Eur. J. Nat. History. 2014; 1: 10– 14. URL: http://www.world-science.ru/euro/502-33236.
16. Rolland A., Jouvin-Marche E., Viret C., Faure M., Perron H., Marche P.N. The envelope protein of a human endogenous retrovirus W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J. Immunol. 2006; 176: 7636–7644.
17. Haraguchi S., Good R.A. A potient immunosuppressive retroviral peptide: cytokine patterns and signaling pathways. Immunol. Res. 2008; 41: 46–55. DOI: 10.1007/s 12026-007-0039-6.
18. Smagin A.A., Goldina I.A., Gaidul K.V., Lubarsky M.S. The investigation of blood mononuclear cells proliferative activity under the endogenous retrovirus envelope region peptide influence. Meditcinskaya immunologia – Medical Immunology. 2013; 4: 52–59 (in Russ.).
19. Goldina I.A., Safronova I.V., Gaidul K.V. The endogenous retrovirus HERV-E λ 4-1 immunotropic properties. Rossiiskii immunologicheskii jurnal – Russian Journal of Immunology. 2013; 7 (16): 231 (in Russ.).
20. Hu X., Zhu W., Chen S., Liu Y., Sun Z., Geng T., Wang X., Gao B., Song C., Qin A., Cui H. Expression of the env gene from the avian endogenous retrovirus ALVE and regulation by miR-155. Arch. Virol. 2016; 161 (6): 1623– 1632. DOI: 10.1007/s00705-016-2833-8.
21. Li F., Karlsson H. Expression and regulation of human endogenous retrovirus W elements. APMIS. 2016; 124 (1–2): 52–66. DOI: 10.1111/apm.12478.
22. Miousse I.R., Chalbot M.C., Lumen A., Ferguson A., Kavouras I.G., Koturbash I. Response of transposable elements to environmental stressors. Mutat. Res. Rev. Mutat. Res. 2015; 765: 19–39. DOI: 10.1016/j.mrrev.2015.05.003.
23. Yi J.M., Kim H.S. Molecular phylogenetic analysis of the human endogenous retrovirus E (HERV – E) family in human tissues and human cancers. Genes Genet. 2007; 82(1): 89–98.
24. Blank M. Cross-talk of the environment with the host genome and the immune system through endogenous retroviruses in systemic lupus erythematosus. Lupus. 2009; 18: 1136–1143.
25. Goldina I.A., Gaidul K.V., Smagin A.A., Safronova I.V., Goldin B.G., Pavlov V.V., Lubarsky M.S., Kozlov V.A. The I class human endogenous retrovirus envelope gene expression in blood cells of multiple sclerosis patients. Molekuliarnaya medicina – Molecular Medicine. 2011; 1: 31–35 (in Russ.).
26. Perron H., Lang A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroin flammation. Clin. Rev. Allergy Immunol. 2010; 39: 51–61.
27. Balestrieri E., Pica F., Matteucci C., Zenobi R., Sorrentino R., Argaw-Denboba A., Cipriani C., Bucci I., Sinibaldi-Vallebona P. Transcriptional activity of human endogenous retroviruses in human peripheral blood mononuclear cells. HPC BioMed. Res. Intern. 2015; article ID 164529, 9. DOI: org/10.1155/2015/164529.
28. Perot P., Mugnier N., Montgiraud C., Gimenez J., Jaillard M., Bonnaud B., Mallet F. Microarray-based sketches of the HERV transcriptome landscape // PLoS One. 2012; 7 (6): e40194. DOI: 101371/journal.pone.0040194.
29. Goldina I.A., Gaidul K.V., Markova E.V., Kozlov V.A. The cell immune response under the influence of aminoacid sequence of the I class endogenous retrovirus HERV-E λ 4-1 recombinant peptide. Vestnik uralskoy medicinskoy akademicheskoy nauki – The Herald of Ural’s Medical Academic Science. 2009; 2/1(35): 28–30 (in Russ.).
30. Goldina I.A., Gaidul K.V. The mofofunctional parameters of the mice lymphoid organs under the influence of transmembrane protein p15E recombinant peptide. Vestnik uralskoy medicinskoy akademicheskoy nauki – The Herald of Ural’s Medical Academic Science. 2011; 2/1 (35): 28–29 (in Russ.).
31. Wu Z., Mei X., Zhao D., Sun Y., Song Y., Pan W., Shi W. DNA methylation modulates HERV-E expression in CD 4+ T cells from systemic lupus erythematosus patients. J. Dermatol. Sci. 2015; 77(2): 110–116. DOI: 10.1016/j. jdermsci.2014.12.004.
32. Chiappinelli K.B., Strissel P.L., Desrichard A., Li H., Henke C., Akman B., Hein A., Rote N.S., Cope L.M., Snyder A., Makarov V., Buhu S., Slamon D.J. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015; 162 (5): 974–986. DOI: 10.1016/j.cell.2015.07.011.
33. Papp G., Horvath I.F., Gyimesi E., Barath S., Vegh J., Szodoray P., Zeher M. The assessment of immune-regulatory effects of extracorporeal photopheresis in systemic sclerosis: a long-term follow-up study. Immunol. Res. 2016; 64 (2): 404–411. DOI: 101007/s12026-015-8678-5.
34. Schmitt S., Johnson T.S., Karakhanova S., Naher H., Mahnke K., Enk A.H. Extracorporeal photophoresis augments function of CD4+CD25+FoxP3+ regulatory T cells by triggering adenosine production. Transplantation. 2009; 88(3): 411–416. DOI: 10.1097/TP.0b013e3181aed927.
35. Suchankova J., Legartova S., Sehnalova P., Kozubek S., Valente S., Labella D., Mai A., Eckerich C., Fackelma- yer F.O., Sorokin D.V., Bartova E. PRMT1 arginine methyltransferase accumulates in cytoplastic bodies that respond to selective inhibition and DNA damage. Eur. J. Histochem. 2014; 58 (2): 2389. DOI: 10.4081/ejh.2014.2389.
36. Wang D., Huang J.H., Zeng Q.H., Gu C., Ding S., Lu J.Y., Chen J., Yang S.B. Increased 5-hydroximethylcytosine and ten-eleven translocation protein expression in ultraviolet B-irradiated HaCaT cells. Chin. Med. 2017; 130 (5): 594–599. DOI: 10.4103/0366-6999.200539.
37. Yang A.Y., Lee J.H., Shu L., Zhang C., Su Z.Y., Lu Y., Huang M.T., Ramires C., Pung D., Huang Y., Verzi M., Hart R.P., Kong A.N. Genome-wide analysis of DNA methylation in UVB- and DMBA/TPA-induced mouse skin cancer models. Life Sci. 2014; 113 (1–2): 45–54. DOI: 10.1016/j.lfs.2014.07.031.
Review
For citations:
Goldina I.A., Gaidul K.V., Kozlov V.A. UVI-induced endogenous retrovirus HERV-E λ 4-1 expression in blood mononuclear cells. Bulletin of Siberian Medicine. 2018;17(1):36-44. (In Russ.) https://doi.org/10.20538/1682-0363-2018-1-36-44