Surgical correction of metabolic syndromes in rats: methodological aspects
https://doi.org/10.20538/1682-0363-2018-1-59-74
Abstract
Aim. The study was aimed at detailed description of the technique of bariatric surgical interventions with varying metabolic effects in the rat. We also provided comparison between different surgical operations and considered rationale for making several types of surgery simultaneously.
Materials and мethods. The study was performed on 120 male Wistar rats (380–510 g) housed in the SPF rodent facility. The animals were anesthetized using isoflurane anesthesia. The following types of surgery were performed and described: sleeve gastrectomy, gastric bypass, gastrojejunal bypass, ileal transposition, and combination of sleeve gastrectomy and ileal transposition. The technical complexity of surgery was scored according to 10-point scale.
Results. The methodological aspects of sleeve gastrectomy, gastric bypass, gastrojejunal bypass, and ileal transposition in rats are considered in detail. Sleeve gastrectomy and gastric bypass are the most commonly used types of bariatric surgery, while gastrojejunal bypass and ileal transposition are specifically aimed at modeling of metabolic effects. The article considered preoperative planning as well as major stages of surgery. We focused attention on perioperative complications and technical nuances.
Conclusion. Modeling of bariatric surgical interventions on the small laboratory rodents is challenging, requires sophisticated manual skills and microsurgical equipment. The illustrated description of these surgical interventions will provide a useful reference for beginners in this laborious part of experimental surgery.
About the Authors
O. V. KornyushinRussian Federation
Kornyushin Oleg V., PhD, Leading Researcher, Laboratory of Metabolic Disorders, Institute of Endocrinology.
2, Akkuratova Str., Saint Petersburg, 197341.
Ya. G. Toropova
Russian Federation
Toropova Yana G., PhD, Head of the Laboratory of Bioprosthetics and Cardioprotection, Institute of Experimental Medicine.
2, Akkuratova Str., Saint Petersburg, 197341.
A. E. Neimark
Russian Federation
2, Akkuratova Str., Saint Petersburg, 197341.
O. M. Berko
Russian Federation
Berko Olesya M., Student.
6/8, Lva Tolstogo Str., Saint Petersburg, 197022.
D. D. Glistenkova
Russian Federation
Glistenkova Diana D., Student. 6/8, Lva Tolstogo Str., Saint Petersburg, 197022.
L. G. Carelli
Russian Federation
Carelli Lucas G., Student.
6/8, Lva Tolstogo Str., Saint Petersburg, 197022.
A. S. Polozov
Russian Federation
Polozov Alexander S., Researcher.
6, Emb. Makarova., Saint Petersburg, 199034.
M. M. Galagudza
Russian Federation
Galagudza Mikhail M., DM, Director of the Institute of Experimental Medicine.
2, Akkuratova Str., Saint Petersburg, 197341.
References
1. Zvenigorodskaya L.A. Endocannabinoid system, food addiction, morbid obesity. Consilium medicum. Gastroe’nterologiya – Gastroentorogy. 2014; 16 (8): 67–72 (in Russ.).
2. Inzucchi S.E., Bergenstal R.M., Buse J.B., Diamant M., Ferrannini E., Nauck M., Peters A.L., Tsapas A., Wen- der R., Matthews D.R. American Diabetes Association (ADA); European Association for the Study of Diabetes (EASD). Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012; 35 (6): 1364–1379. DOI: 10.2337/dc12-0413.
3. Ivashkin V.T., Maevskaya M.V. Lipotoxicity and other metabolic disorders with obesity. Rossijskij zhurnal gastroe’nterologii, gepatologii i koloproktologii – Russian Journal of Gastroenterology, Hepatology and Coloproctology. 2010; 1 (2): 4–13 (in Russ.).
4. Chalasani N., Younossi Z., Lavine J.E., Diehl A.M., Brunt E.M., Cusi K., Charlton M., Sanyal A.J. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. American Gastroenterological Association; American Association for the Study of Liver Diseases; American College of Gastroenterology. Gastroenterology. 2012; 142 (7): 1592–1609. DOI: 10.1002/hep.25762.
5. Buchwald H., Avidor Y., Braunwald E., Jensen M.D., Pories W., Fahrbach K., Schoelles K. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004; 292 (14): 1724–1737. DOI: 10.1001/jama.292.14.1724.
6. Angrisani L., Santonicola A., Hasani A., Nosso G., Capaldo B., Iovino P. Five-year results of laparoscopic sleeve gastrectomy: effects on gastroesophageal reflux disease symptoms and co-morbidities. Surg. Obes. Relat. Dis. 2016; 12 (5): 960–968. DOI: 10.1016/j.soard.2015.09.014.
7. Fried M., Yumuk V., Oppert J.M., Scopinaro N., Torres A.J., Weiner R., Yashkov Y., Fruhbeck G. European Association for the Study of Obesity; International Federation for the Surgery of Obesity – European Chapter. Interdisciplinary European Guidelines on metabolic and bariatric surgery. Obes. Facts. 2013; 6 (5): 449–468. DOI: 10.1159/000355480.
8. Kornyushin O.V., Toropova Ya.G., Semikova G.V., Nejmark A.E., Dora S.V., Davy’dova E.E., Karelli L., Tkachuk O.V., Markitantova A.S. Pathophysiological aspects of the pleiotropic effects of gastrointestinal hormones. E’ksperimental’naya i klinicheskaya gastroe’nterologiya – Experimental and Clinical Gastroenterology. 2016; 10: 4–14 (in Russ.).
9. Xu G., Stoffers D.A., Habener J.F., Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999; 48 (12): 2270–2276. DOI: 10.2337/diabetes.48.12.2270.
10. Chai W., Dong Z., Wang N., Wang W., Tao L., Cao W., Liu Z. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes. 2012; 61 (4): 888–896. DOI: 10.2337/db11-1073.
11. Perry T., Lahiri D.K., Sambamurti K., Chen D., Matt- son M.P., Egan J.M., Greig N.H. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J. Neurosci. Res. 2003; 72 (5): 603–612. DOI: 10.1002/jnr.10611.
12. D’Alessio D.A., Kahn S.E., Leusner C.R. et al. Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J. Clin. Invest. 1994; 93 (8): 2263–2266. DOI: 10.1172/JCI117225.
13. Ban K., Noyan-Ashraf M.H., Hoefer J. et al. Cardioprotective and vasodilatory actions of glucagonlike peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008; 117 (1): 2340–2350. DOI: 10.1161/CIRCULATIONAHA.107.739938.
14. Kodama Y., Johannessen H., Furnes M.W., Zhao C.-M., Johnsen G., Marvik R., Kulseng B., Chen D. Mechanistic сomparison between gastric bypass vs. duodenal switch with sleeve gastrectomy in rat models. PLoS ONE. 2013; 8 (3): 34–40. DOI: org/10.1371/journal.pone.0072896.
15. De Sesso J.M., Jacobson C.F. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food and Chemical Toxicology. 2001; 39 (11): 209–228.
16. Granger D.N., Barrowman J.A., Hvietys P.R. Clinical Gastrointestinal Physiology. U.B. Saunders, Philadelphia. 1985; 12 (7): 27–38.
17. Kodama Y., Johannessen H., Furnes M.W., Zhao C.M., Johnsen G., Marvik R., Kulseng B., Chen D. Mechanistic comparison between gastric bypass vs. duodenal switch with sleeve gastrectomy in rat models. PLoS One. 2013; 8 (3): 11–17. DOI: 10.1371/journal.pone.0072896.
18. Acholonu E., McBean E., Court I., Bellorin O., Szomstein S., Rosenthal R.J. Safety and short-term outcomes of laparoscopic sleeve gastrectomy as a revisional approach for failed laparoscopic adjustable gastric banding in the treatment of morbid obesity. Obes. Surg. 2009; 19 (10): 1612–1616. DOI: 10.1007/s11695-009-9941-4.
19. Angrisani L., Santonicola A., Iovino P., Vitiello A., Zundel N., Buchwald H., Scopinaro N. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes. Surg. 2017; 14 (5): 140–145. DOI: 10.1007/s11695017-2666-x.
20. Chang X, Cai H, Yin K. The regulations and mechanisms of laparoscopic sleeve gastrectomy (LSG) for obesity and type 2 diabetes: a systematic review. Surg. Laparosc. Endosc. Percutan. Tech. 2017; 10 (8): 73–77. DOI: 10.1097/SLE.0000000000000468.
21. Vives M., Molina A., Danus M., Rebenaque E., Blanco S., Paris M., Sanchez A., Sabench F., Del Castillo D. Analysis of gastric physiology after laparoscopic sleeve gastrectomy (LSG) with or without antral preservation in relation to metabolic response: a randomized study. Obes. Surg. 2017; 18 (8): 55–61. DOI: 10.1007/s11695017-2700-z.
22. Braghetto I., Taladriz C., Lanzarini E., Romero C. Plasma ghrelin levels in the late postoperative period of vertical sleeve gastrectomy. Rev. Med. Chil. 2015; 143 (17): 864–869. DOI: 10.4067/S0034-98872015000700006.
23. Wang Q., Tang W., Rao W.S., Song X., Shan C.X., Zhang W. Changes of Ghrelin/GOAT axis and mTOR pathway in the hypothalamus after sleeve gastrectomy in obese type-2 diabetes rats. World J. Gastroenterol. 2017; 23 (34): 6231–6241. DOI: 10.3748/wjg.v23.i34.6231.
24. Kodama Y., Johannessen H., Furnes M.W., Zhao C.M., Johnsen G., Marvik R., Kulseng B., Chen D. Mechanistic comparison between gastric bypass vs. duodenal switch with sleeve gastrectomy in rat models. PLoS One. 2013; 23 (9): 12–18. DOI: org/10.1371/journal.pone.0072896.
25. Schlager A., Khalaileh A., Mintz Y., Abu Gazala M., Globerman A., Ilani N., Rivkind A.I., Salpeter S., Dor Y., Zamir G. A mouse model for sleeve gastrectomy: applications for diabetes research. Microsurgery. 2011; 31 (1): 66–71. DOI: 10.1002/micr.20797.
26. Bruinsma B.G., Uygun K., Yarmush M.L., Saeidi N. Surgical models of Roux-en-Y gastric bypass surgery and sleeve gastrectomy in rats and mice. Nat. Protoc. 2015; 10 (3): 495–507. DOI: 10.1038/nprot.2015.027.
27. Mason E.E., Ito C. Gastric bypass in obesity. Obes. Res. 1996; 4 (3): 316–319.
28. Buchwald H., Estok R., Fahrbach K., Banel D., Jensen M.D., Pories W.J., Bantle J.P., Sledge I. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 2009; 122 (3): 248–256. DOI: 10.1016/j.amjmed.2008.09.041.
29. Liu J.Y., Mu S., Zhang S.P., Guo W., Li Q.F., Xiao X.Q., Zhang J., Wang Z.H. Roux-en-Y gastric bypass surgery suppresses hypothalamic PTP1B protein level and alleviates leptin resistance in obese rats. Exp. Ther. Med. 2017; 14 (3): 2536–2542. DOI: 10.3892/etm.2017.4801.
30. Angrisani L., Santonicola A., Iovino P., Vitiello A., Zundel N., Buchwald H., Scopinaro N. Bariatric surgery and endoluminal procedures: IFSO worldwide survey 2014. Obes. Surg. 2017; 18 (3): 56–61. DOI: 10.1007/s11695-017-2666-x.
31. Woelnerhanssen B., Peterli R., Steinert R.E., Peters T., Borbely Y., Beglinger C. Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy – a prospective randomized trial. Surg. Obes. Relat. Dis. 2011; 7 (5): 561–568. DOI: 10.1016/j.soard.2011.01.044.
32. Bruinsma B.G., Uygun K., Yarmush M.L., Saeidi N. Surgical models of Roux-en-Y gastric bypass surgery and sleeve gastrectomy in rats and mice. Nat. Protoc. 2015; 10 (3): 495–507. DOI: 10.1038/nprot.2015.027.
33. Kraljevic M., Delko T., Kцstler T., Osto E., Lutz T., Thommen S., Droeser R.A., Rothwell L., Oertli D., Zingg U. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic mini gastric bypass in the treatment of obesity: study protocol for a randomized controlled trial. Trials. 2017; 18 (1): 226. DOI: 10.1186/s13063-017-1957-9.
34. Sanchez-Pernaute A., Herrera M.A., Perez-Aguirre M.E., Talavera P., Cabrerizo L., Matia P., Diez-Valladares L., Barabash A., Martin-Antona E., Garcia-Botella A., Garcia-Almenta E.M., Torres A. Single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S). One to three-year follow-up. Obes. Surg. 2010; 20 (12): 1720– 1726. DOI: 10.1007/s11695-010-0247-3.
35. Rubino F., Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann. Surg. 2004; 239 (1): 1–11. DOI: 10.1097/01.sla.0000102989.54824.fc.
36. Speck M., Cho Y.M., Asadi A., Rubino F., Kieffer T.J. Duodenal-jejunal bypass protects GK rats from {beta}cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am. J. Physiol. Endocrinol. Metab. 2011; 300 (5): 923–932. DOI: 10.1152/ajpendo.00422.2010.
37. De Paula A.L., Macedo A.L.V., Rassi N. Laparoscopic treatment of type 2 diabetes mellitus for patients with a body mass index less than 35. Surg. Endosc. 2008; 22 (3): 706–716. DOI: 10.1007/s00464-007-9472-9.
38. Babenko A.Yu., Nejmark A.E., Anisimova K.A., Grineva E.N. Effects of bariatric surgery on the level of hormones that regulate body weight. What is the basis of success?. Ozhirenie i metabolism – Obesity and Metabolism. 2014; 4: 3–11 (in Russ.).
39. De Paula A.L., Stival A.R., Macedo A. Prospective randomized controlled trial comparing 2 versions of laparoscopic ileal interposition associated with sleeve gastrectomy for patients with type 2 diabetes with BMI 21–34 kg/m2. Surg. Obes. Relat. Dis. 2010; 6 (3): 296–304. DOI:10.1016/j.soard.2009.10.005.
40. Kota S.K., Ugale S., Gupta N., Modi K.D. Laparoscopic ileal interposition with diverted sleeve gastrectomy for treatment of type 2 diabetes. Diabetes Metab. Syndr. 2012; 6 (3): 125–131. DOI: 10.1016/j.dsx.2012.09.014.
41. Yang Y.H., Yan J., Wu Y.J. Impact of sleeve gastrectomy with ileal interposition duodenojejunal bypass operation on lipid metabolism in nonobese type 2 diabetes mellitus patients. Chinese Journal of Gastrointestinal Surgery. 2013; 16 (3): 273–275. DOI: 10.1186/s40064015-1216-z.
Review
For citations:
Kornyushin O.V., Toropova Ya.G., Neimark A.E., Berko O.M., Glistenkova D.D., Carelli L.G., Polozov A.S., Galagudza M.M. Surgical correction of metabolic syndromes in rats: methodological aspects. Bulletin of Siberian Medicine. 2018;17(1):59-74. (In Russ.) https://doi.org/10.20538/1682-0363-2018-1-59-74