Preview

Bulletin of Siberian Medicine

Advanced search

Effects of mesenchymal stromal cells on monocyte differentiation to M1 phenotype and M1/M2 macrophage switching

https://doi.org/10.20538/1682-0363-2018-1-167-176

Abstract

Objective. Mesenchymal stromal cells (MSCs) promote the differentiation of unprimed macrophages (Mр) or classically activated M1 cells towards alternatively activated, M2 macrophages. The aim of the work was to study the ability of MSC to induce M1→M2 switching by comparing the MSC effects on polarized M1 macrophages and monocytes stimulated by granulocyte-macrophage colony-stimulating factor to M1 differentiation.

Material and мethods. MSC were co-cultured with monocytes for 7 days or M1 macrophages for 48 hours in Transwell system to prevent direct cell-to-cell contacts. To characterize generated Mр, classical M2 marker CD206, allostimulatory activity in a mixed lymphocyte culture (MLC), and the ability to secrete pro-/antiinflammatory mediators were analyzed.

Results. Co-cultivation of MSCs and M1 macrophages led to the appearance of phenotypic (increased expression of CD206) and functional (decrease in allostimulatory activity) features of M2 phenotype. When MSCs were cultured with monocytes in the M1-inducing medium, generated Mр elicited a pronounced stimulating activity in MLC similar to that of M1 (stimulation index 3.45 and 3.4, p = 0.46) and significantly higher than allostimulatory activity of M2 cells (3.45 vs 2.2, p = 0.03). In addition, MSCs did not influence the expression of CD206, as well as the production of pro- (IL-1β, TNF-α, IL-6, IL-12) and anti-inflammatory (IL1-ra, IL-4, IL-10) cytokines, immunoregulatory cytokines (IFN-γ, IL-17) and chemokines (IP-10, MCP-1, MIP-1b, Rantes, Eotaxin).

Conclusions: The ability of MSC to induce the M2 phenotype depends on the stage of differentiation of monocyte/macrophages. MSCs promote M1→M2 switching in cultures of polarized M1 macrophages. In contrast, when MSCs interacted with monocytes in M1-inducing medium, a population of M1-like macrophages is formed with high allostimulatory activity and typical for M1 spectrum of produced cytokines and chemokines.

About the Authors

E. Ya. Shevela
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI) .
Russian Federation

Shevela Ekaterina Ya., DM, Leading Researcher, Laboratory of Cellular Immunotherapy.

14, Yadrintsevskaya Str., Novosibirsk, 630099.



L. V. Sakhno
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI) .
Russian Federation

Sakhno Ludmila V., PhD, Senior Researcher, Laboratory of Cellular Immunotherapy.

14, Yadrintsevskaya Str., Novosibirsk, 630099.



M. A. Tikhonova
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI) .
Russian Federation

Tikhonova Marina A., PhD, Senior Researcher, Laboratory of Cellular Immunotherapy.

14, Yadrintsevskaya Str., Novosibirsk, 630099.



E. V. Batorov
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI) .
Russian Federation

Batorov Egor V., PhD, Research fellow, Laboratory of Cellular Immunotherapy.

14, Yadrintsevskaya Str., Novosibirsk, 630099.



A. A. Ostanin
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI) .
Russian Federation

Ostanin Aleksandr A., DM, Professor, Chief Researcher, Laboratory of Cellular Immunotherapy.

14, Yadrintsevskaya Str., Novosibirsk, 630099.



E. R. Chernykh
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI) .
Russian Federation

Chernykh Elena R., DM, Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Laboratory of Cellular Immunotherapy.

14, Yadrintsevskaya Str., Novosibirsk, 630099.



References

1. Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005; 5: 953–964.

2. Röszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015; 2015: 816460. DOI: 10.1155/2015/816460.

3. Németh K., Leelahavanichkul A., Yuen P.S., Mayer B., Parmelee A., Doi K., Robey P.G., Leelahavanichkul K., Koller B.H., Brown J.M., Hu X., Jelinek I., Star R.A., Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine. 2009; 15 (1): 42–49. DOI: 10.1038/nm.1905.

4. Ben-Mordechai T., Holbova R., Landa-Rouben N., Harel-Adar T., Feinberg M.S., Abd Elrahman I., Blum G., Epstein F.H., Silman Z., Cohen S., Leor J. Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. Journal of the American College of Cardiology. 2013; 62 (20): 1890–1901. DOI: 10.1016/j.jacc.2013.07.057.

5. Gupta N., Su X., Popov B., Lee J.W., Sericov V., Matthay M.A. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J. Immunol. 2007; 179: 1855–1863.

6. Braza F., Dirou S., Forest V., Sauzeau V., Hassoun D., Chesné J., Cheminant-Muller M.A., Sagan C., Magnan A., Lemarchand P. Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells. 2016; 34 (7): 1836–1845 DOI: 10.1002/stem.2344.

7. Cheng Z.J., He X.J. Anti-inflammatory effect of stem cells against spinal cord injury via regulating macrophage polarization. J. Neurorestoratol. 2017; 5: 31–38. DOI:10.2147/JN.S115696.

8. He S., Gleason J., Fik E., DiFiglia A., Bharathan M., Morschauser A., Djuretic I., Xu Y., Krakovsky M., Jankovic V., Buensuceso C., Edinger J., Herzberg U., Hofgartner W., Hariri R. Human Placenta-Derived Mesenchymal Stromal-like Cells (PDA-002) Enhance Angiogenesis via T Cell-Dependent Reprogramming of Macrophage Differentiation. Stem Cells. 2017; Feb. 24. DOI: 10.1002/stem.2598.

9. Kim J., Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Experimental Hematology. 2009; 37 (12): 1445–1453. DOI: 10.1016/j.exphem.2009.09.004.

10. Choi H., Lee R.H., Bazhanov N., Oh J.Y., Prockop D.J. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood. 2011; 118 (2): 330–338. DOI: 10.1182/ blood-2010-12-327353.

11. Melief S.M., Geutskens S.B., Fibbe W.E., Roelofs H. Multipotent stromal cells skew monocytes towards an antiinflammatory interleukin-10-producing phenotype by production of interleukin-6. Haematologica. 2013; 98 (6): 888–895. DOI: 10.3324/haematol.2012.078055.

12. Franсois M., Romieu-Mourez R., Li M., Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Molecular Therapy. 2012; 20 (1): 187–195. DOI: 10.1038/mt.2011.189

13. Melief S.M., Schrama E., Brugman M.H., Tiemessen M.M., Hoogduijn M.J., Fibbe W.E., Roelofs H. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward antiinflammatory macrophages. Stem Cells. 2013; 31 (9): 1980–1991. DOI: 10.1002/stem.1432.

14. Sica A., Erreni M., Allavena P., Porta C. Macrophage polarization in pathology. Cell Mol. Life Sci. 2015; 72 (21): 4111–1126. DOI: 10.1007/s00018-015-1995-y.

15. Fairweather D., Cihakova D. Alternatively activated macrophages in infection and autoimmunity. J. Autoimmun. 2009; 33 (3–4): 222–30. DOI: 10.1016/j. jaut.2009.09.012.

16. Li Y., Lee P.Y., Reeves W.H. Monocyte and macrophage abnormalities in systemic lupus erythematosus. Arch. Immunol. Ther. Exp. (Warsz). 2010; 58(5):355-64. DOI: 10.1007/s00005-010-0093-y.

17. Chernykh E.R., Shevela E.Ya., Sakhno L.V., Tikhono- va M.A., Petrovsky Ya.L., Ostanin A.A. The generation and properties of human M2-like macrophages: potential candidates for CNS repair? Cellular Therapy and Transplantation. 2010; 2 (6). DOI: 10.3205/ctt-2010en-000080.01).

18. Sakhno L.V., Shevela E.Y., Tikhonova M.A., Ostanin A.A., Chernykh E.R. The phenotypic and functional features of human M2 macrophages generated under low serum conditions. Scand J. Immunol. 2016; 83 (2): 151–159. DOI: 10.1111/sji.12401.

19. Maggini J., Mirkin G., Bognanni I., Holmberg J., Piaz- zуn I.M., Nepomnaschy I., Costa H., Caсones C., Raiden S., Vermeulen M., Geffner J.R. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One. 2010; 5 (2): e9252. DOI: 10.1371/journal.pone.0009252.

20. Cho D.I., Kim M.R., Jeong H.Y., Jeong H.C., Jeong M.H., Yoon S.H., Kim Y.S., Ahn Y. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp. Mol. Med. 2014; 46: e70. DOI: 10.1038/emm.2013.135.

21. Vasandan A.B., Jahnavi S., Shashank C., Prasad P., Kumar A., Prasanna S.J. Human mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci. Rep. 2016; 6: 38308. DOI: 10.1038/srep38308.

22. Chiossone L., Conte R., Spaggiari G.M., Serra M., Ro- mei C., Bellora F., Becchetti F., Andaloro A., Moretta L., Bottino C. Mesenchymal stromal cells induce peculiar alternatively activated macrophages capable of dampening both innate and adaptive immune responses. Stem Cells. 2016; 34 (7): 1909–1921. DOI: 10.1002/stem.2369.

23. Byrne A., Reen D.J. Lipopolysaccharide induces rapid production of IL-10 by monocytes in the presence of apoptotic neutrophils. J. Immunol. 2002; 168 (4): 1968–1977.

24. Fraser D.A., Laust A.K., Nelson E.L., Tenner A.J. C1q differentially modulates phagocytosis and cytokine responses during ingestion of apoptotic cells by human monocytes, macrophages, and dendritic cells. J. Immunol. 2009; 183 (10): 6175–6185. DOI: 10.4049/jimmunol.0902232.

25. Chung E.Y., Liu J., Homma Y., Zhang Y., Brendolan A., Saggese M., Han J., Silverstein R., Selleri L., Ma X. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity. 2007; 27 (6): 952–964.

26. Das A., Ganesh K., Khanna S., Sen C.K., Roy S. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J. Immunol. 2014; 192 (3): 1120–1129. DOI: 10.4049/jimmunol.1300613.

27. Kim S., Elkon K.B., Ma X. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity. 2004; 21 (5): 643–53.

28. Xu W., Roos A., Schlagwein N., Woltman A.M., Da- ha M.R., van Kooten C. IL-10-producing macrophages preferentially clear early apoptotic cells. Blood. 2006; 107 (12): 4930–4937.

29. Perdiguero E.G., Geissmann F. The development and maintenance of resident macrophages. Nat. Immunol. 2016; 17 (1): 2–8. DOI: 10.1038/ni.3341.

30. Schulz C., Gomez Perdiguero E., Chorro L., Szabo-Rogers H., Cagnard N., Kierdorf K., Prinz M., Wu B., Jacobsen S.E., Pollard J.W., Frampton J., Liu K.J., Geissmann F. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012; 336 (6077): 86–90. DOI: 10.1126/science.1219179.


Review

For citations:


Shevela E.Ya., Sakhno L.V., Tikhonova M.A., Batorov E.V., Ostanin A.A., Chernykh E.R. Effects of mesenchymal stromal cells on monocyte differentiation to M1 phenotype and M1/M2 macrophage switching. Bulletin of Siberian Medicine. 2018;17(1):167-176. (In Russ.) https://doi.org/10.20538/1682-0363-2018-1-167-176

Views: 1060


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)