Hemocompatibility of magnetic magnethite nanoparticles and magnetite-silica composites in vitro
https://doi.org/10.20538/1682-0363-2018-3-157-167
Abstract
The goal of the present research is to study the hemocompatibility of magnetic nanoparticles (MNPs) in model systems in vitro.
Materials and methods. Magnetite nanoparticles and magnetite colloidal solutions were used in 0.9% NaCl in concentrations 0.2, 2.0 and 20.0 mg/ml. The study was performed with heparinized human whole blood, 1 ml of which was mixed with 1 of ml nanoparticles/physiological solution. Measurements were made directly after mixing, and then 1, 2.5 and 5 hours later. The amount of reactive oxygen species (ROS) was measured with luminol-dependent chemiluminiscence (CL). An erythrocyte aggregation index was calculated. For the assessment of hemolytic properties, a hemolysis coefficient was calculated based on optical density of the plasma. The nanoparticless surface protein layer investigation was performed with IR-Fourier spectroscopy.
Results. Nanoparticles decline CL in timeand concentration-dependent manner. Erythrocyte aggregation stability grows, but concentration and/or application time increment leads to significant hemolysis. IR-Fourier spectroscopy data shows albumin as main component of protein crown, whose conformation changes in time.
Given data proves safety of studied MNPs in relation to examined parameters in low (0.2 and 2.0 mg/ml) concentrations up to 2.5 hours interaction. This allows us to treat these MNPs as a promising agents for further use in medical practice after completing examinations related to other homeostasis indicators.
Keywords
About the Authors
Y. G. ToropovaRussian Federation
Toropova Yana G. - PhD, Associate Professor, Head of Bioprosthetics and cardioprotection Research Lab.
15b, Parkhomenko Av., Saint-Petersburg, 194156
N. A. Pechnikova
Russian Federation
Pechnikova Nadezhda A. - Еxpert of Рreclinical Research Group, V.A. Almazov NNWMRC.
15b, Parkhomenko Av., Saint-Petersburg, 194156; 14a, Professor Popov Str., Saint-Petersburg, 197022
I. A. Zelinskaya
Russian Federation
Zelinskaya Irina A. - Junior Researcher, V.A. Almazov NNWMRC.
15b, Parkhomenko Av., Saint-Petersburg, 194156; 49, Kronverskiy Av., Saint-Petersburg, 197101
D. V. Korolev
Russian Federation
Korolev Dmitriy V. - PhD, Associate Professor, Head of Nanotechnology Research Lab, V.A. Almazov NNWMRC.
15b, Parkhomenko Av., Saint-Petersburg, 194156; 49, Kronverskiy Av., Saint-Petersburg, 197101
K. G. Gareev
Russian Federation
Gareev Kamil G. - PhD, Assistant Professor.
5, Professor Popov Str., Saint-Petersburg, 197376
А. S. Markitantova
Russian Federation
Markitantova Anastasia S.
29, Politekhnicheskaya Str., Saint-Petersburg, 195251
V. D. Bogushevskaya
Russian Federation
Bogushevskaya Vlada D..
29, Politekhnicheskaya Str., Saint-Petersburg, 195251
A. V. Povolotskaya
Russian Federation
Povolotskaya Anastasia V. - PhD, Vice Director, Center for Optical and Laser Materials Research.
5, Ulyanovskaya Str., Saint-Petersburg, Peterhof, 198504
A. A. Manshina
Russian Federation
Manshina Alina A. - DChSc, Associate Professor.
5, Ulyanovskaya Str., Saint-Petersburg, Peterhof, 198504
References
1. Liu X.L., Choo E.S.G., Ahmed A.S., Zhao L.Y., Yang Y., Ramanujan R.V., Xue J.M., Fan D.D., Fan H.M., Ding J. Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents. J. Mater. Chem. B. 2014; 1 (2): 120–128. DOI: 10.1039/C3TB21146K.
2. Chu M., Shao Y., Peng J., Dai X., Li H., Wu Q., Shi D. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials. 2013; 34 (16): 4078–4088. DOI: 10.1016/j.biomaterials.2013.01.086.
3. Hainfeld J.F., Slatkin D.N., Focella T.M., Smilowitz H.M. Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. 2006; 79 (939): 248–253. DOI: 10.1259/bjr/13169882.
4. Kharitonskii P.V., Gareev K.G., Ionin S.A., Ryzhov V.A., Bogachev Y.V., Klimenkov B.D., Kononova I.E., Moshnikov V.A. Microstructure and Magnetic State of Fe3O4SiO2 Colloidal Particles. J. Magn. 2015; 20 (3): 221–228. DOI: 10.4283/jmag.2015.20.3.221.
5. Gareev K.G., Ionin S.A., Korolev D.V., Luchinin V.V., Moshnikov V.A., Panov M.F., Permyakov N.V. Study of colloidal particles FemOn-SiO2 synthesized by two different techniques. J. Phys. Con. Ser. 2015; 643 (1): 012088. DOI: 10.1088/1742-6596/643/1/012088.
6. Toropova Y.G., Golovkin A.S., Malashicheva A.B., Korolev D.V., Gorshkov A.N., Gareev K.G., Afonin M.V., Galagudza M.M. In vitro toxicity of FemOn, FemOn-SiO2 composite, and SiO2-FemOn core-shell magnetic nanoparticles. Int. J. Nanomedicine. 2017; 12: 593–603. DOI: 10.2147/ijn.s122580.
7. Gushhin A.G., Poluljah S.V., Murashova N.A., Kalaeva S.Z., Ershova A.N. Effect of magnetite nanoparticles on haemorheological indices. Jaroslavskij pedagogicheskij vestnik – Yaroslavl Pedagogical Herald. 2011; 3 (1): 89–93 (in Russ.).
8. Rinaldi M., Ceciliani F., Lecchi C., Moroni P., Bannerman, D.D. Differential effects of α1-acid glycoprotein on bovine neutrophil respiratory burst activity and IL-8 production. Vet. Immunol Immunopathol. 2008; 126 (3-4): 199–210. DOI: 10.1016/j.vetimm.2008.07.001.
9. Kong J.Yu.S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007; 39 (8): 549–559. DOI: 10.1111/j.17457270.2007.00320.x.
10. Vertegel A.A., Siegel R.W., Dordick J.S. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir. 2004; 20 (16): 6800–6807. DOI: 10.1021/la0497200.
11. Korotkova A.M., Lebedev S.V., Kajumov F.G., Sizova E.A. Morphophysiological changes in wheat (Triticum vulgare L.) under the influence of metal nanoparticles (Fe, Ni, Ni) and their oxides (Fe3O4, CuO, NiO). Sel’skohozjajstvennaja biologija – Agricultural Biology. 2017; 52 (1): 172–182. (in Russ.). DOI:10.15389/agrobiology.2017.1.172rus.
12. Szekeres M., Illés E., Janko C., Farkas K., Tуth I.Y., Nesztor D., Zupkу I., Földesi I., Alexiou C., Tombácz E. Hemocompatibility and biomedical potential of poly(gallic acid) coated iron oxide nanoparticles for theranostic use. J. Nanomed. Nanotechnol. 2015; 6 (1): 252. DOI: 10.4172/2157-7439.1000252.
13. Gatoo M.A., Naseem S., Arfat M.Y., Mahmood Dar.A., Qasim K., Zubair S. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Rresearch International. 2014; 2014: 498420. DOI: 10.1155/2014/498420/
14. Guichard Y., Schmit J., Darne C., Gaté L., Goutet M., Rousset D., Fierro V. Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Annals of Occupational Hygiene. 2012; 56 (5): 631–644. DOI: 10.1093/annhyg/mes006.
Review
For citations:
Toropova Y.G., Pechnikova N.A., Zelinskaya I.A., Korolev D.V., Gareev K.G., Markitantova А.S., Bogushevskaya V.D., Povolotskaya A.V., Manshina A.A. Hemocompatibility of magnetic magnethite nanoparticles and magnetite-silica composites in vitro. Bulletin of Siberian Medicine. 2018;17(3):157-167. (In Russ.) https://doi.org/10.20538/1682-0363-2018-3-157-167