Preview

Bulletin of Siberian Medicine

Advanced search

Formation of ovarian reserve

https://doi.org/10.20538/1682-0363-2018-3-197-206

Abstract

The review of the literature is devoted to modern data on the formation of the ovarian reserve of the female sexual organ. The relationship between the size of the ovarian reserve and length of reproductive capacity emphasizes the importance of understanding the regulatory factors and processes that determine its creation. We described ovarian reserve markers and regulators such as oocyte phosphotidylinositol-3-kinase, a stem-cell factor (kit ligand) that promote the survival of follicles during neonatal development, synaptonemic complex (SCP3), which is the marker of the first division of meiosis, as well as genes DMC1 and PTEN, involved in meiotic transformations and recruitment of primordial follicles. Changes in the expression of some genes and factors in the human fetal ovaries during primary follicular assembly now give an idea of the ways controlling early folliculogenesis. Aberrant production of these factors can cause dysfunction, the development of ovarian disorders and a defective follicular reserve. In particular, the degree of change in the number of germ cells at each of the stages leading to the creation of an ovarian reserve should be noted. This change can affect the final size of the follicular stock, and, consequently, the reproductive longevity of a person and health in the postproductive period. In particular, the number of primary follicles during puberty is positively correlated with the number of growing follicles and their response to gonadotropin treatment. The size of the ovarian reserve depends on the genes involved in proliferation and differentiation of germ cells, sexual differentiation, meiosis, germ cell degeneration, the formation of primary follicles, and the potential mechanism for self-renewal of embryonic stem cells. For example, a possible molecular mechanism has been established leading to a meiotic process in oocytes involving the above genes and factors, as well as apoptotic and antiapoptical signals: Bax, Bcl-2, p53, CDK1, Lsd1, Notch, Stra8, Dazl, Dmc1, Rec8, XIAP , PUMA. Therefore, understanding all the subtleties and molecular mechanisms at each stage of laying down and developing the ovaries, sex cells and their environment, and the death of gametes, can help to search for possible regulators and prevent pathological depletion of the follicular stock.

About the Author

V. G. Zenkina
Pacific State Medical University
Russian Federation

Zenkina Viktoriya G. - PhD, Аssociate Рrofessor, Нead of the Department of Biology, Botany and Ecology.

2, Ostryukova Str., 690950, Vladivostok



References

1. Volkova O.V., Bicherova I.A., Demyashkin G.A. Growth factors and their importance in the reproduction processes. Fundamental’nye issledovaniya – Fundamental Studies. 2006; 5: 82–83 (in Russ.).

2. Zenkina V.G. The importance of apoptosis in the ovaries in the development of certain diseases of the reproductive system. Fundamental’nye issledovaniya – Fundamental Research. 2011; 6: 227–230 (in Russ.).

3. Zenkina V.G., Solodkova O.A. Ovarian reserve of women in Vladivostok in the late reproductive period. Fundamental’nye issledovaniya – Fundamental Research. 2014; 4: 76–80 (in Russ.).

4. Zenkina V.G. Factors of angiogenesis in the development of the physiological and pathological processes of the female gonad. Byulleten’ sibirskoy meditsiny – Bulletin of Siberian Medicine. 2016; 15 (4): 111–119 (in Russ.).

5. Zenkina V.G., Karedina V.S., Solodkova O.A., Slutskaya T.N., Yufereva A.L. Morphology of ovarian androgenized rats on the background of the extract from Cucumaria. Tikhookeanskiy meditsinskiy zhurnal – Pacific Medical Journal. 2007; 4: 70–72 (in Russ.).

6. Borovaya T.G., Shevlyagina N.V., Didenko L.V. Intraovarian regulators of folliculogenesis. Uspekhi fiziologicheskikh nauk – Uspekhi Fiziologicheskikh Nauk. 2010; 41 (1): 58–74 (in Russ.).

7. Zenkina V.G., Solodkova O.A., Pogukay O.N., Karedina V.S. Modern concepts of intra-organic regulation of folliculogenesis in the ovary. Sovremennye problemy nauki i obrazovaniya – Modern Problems of Science and Education. 2012; 2: Access mode: www.sience-education.ru (in Russ.).

8. Denton D., Xu T., Kumar S. Autophagy as a pro-death pathway. Immunology and Cell Biology. 2015; 93 (1): 35–42. DOI:10.1038/icb.2014.85.

9. Dubey P.K., Sharma G.T. Nitric oxide and ovarian folliculogenesis: a possible role in follicular atresia. Asian-Australas J. Anim. Sci. 2016; http://dx.doi.org/10.5713/ajas.15.0831. DOI:10.5713/ajas.15.0831.

10. Tatone C., Carbone M.C., Gallo R., Delle Monache S., Di Cola M., Alesse E., Amicarelli F. Age-associated changes in mouse oocytes during postovulatory in vitro culture: possiblerole for meiotic kinases and survival factor BCL2. Biol. Reprod. 2006; 74 (2): 395–402.

11. Depmann M., Faddy M.J., van der Schouw Y.T., Peeters P.H., Broer S.L., Kelsey T.W., Nelson S.M., Broekmans F.J. The relation between variation in size of the primordial follicle pool and age at natural menopause. J. Clin. Endocrinol. Metab. 2015; 100 (6): e845–851. DOI:10.1210/jc.2015-1298.

12. Wallace W.H., Kelsey T.W. Human ovarian reserve from conception to menopause. PLoS One. 2010; 5 (1): e8772. DOI: 10.1371/journal.pone.0008772.

13. Gartner A., Boag P.R., Blackwell T.K. Germline survival and apoptosis. WormBook. 2008; 4: 1–20. DOI: 10.1895/wormbook.1.145.1.

14. Findlay J.K., Hutt K.J., Hickey M., Anderson R.A. How Is the Number of Primordial Follicles in the Ovarian Reserve Established? Biol. Reprod. 2015; 93 (5): 111. DOI:10.1095/biolreprod.115.133652.

15. Broekmans F.J., Soules M.R., Fauser B.C. Ovarian aging: mechanisms and clinical consequences. Endocr. Rev. 2009; 30: 465–493. DOI:10.1210/er.2009-0006.

16. Tehrani F.R., Solaymani-Dodaran M., Tohidi M., Gohari M.R., Azizi F. Modelling age at menopause using serum concentration of anti-mullerian hormone. J. Clin. Endocrinol. Metab. 2013; 98 (2): 729–735. DOI:10.1210/jc.2012-3176.

17. Anderson R.A., Mitchell R.T., Kelsey T.W., Spears N., Telfer E.E., Wallace W.H. Cancer treatment and gonadal function: experimental and established strategies for fertility preservation in children and young adults. Lancet Diabetes Endocrinol. 2015; 3 (7): 556–567. DOI:10.1016/S2213-8587(15)00039-X.

18. Kiroshka V.V., Tishchenko Yu.O. Changes in folliculogenesis of sexually mature and neonatal ovarian tissue in conditions of prolonged heterotopic transplantation. Zhurnal evolyutsionnoy biokhimii i fiziologii – Journal of Biochemistry Evolutions and Physioles. 2012; 48 (2): 160–168 (in Russ.).

19. Shuster L.T., Rhodes D.J., Gostout B.S., Grossardt B.R., Rocca W.A. Premature menopause or early menopause: long-term health consequences. Maturitas. 2010; 65 (2): 161–166. DOI:10.1016/j.maturitas.2009.08.003.

20. Kim J., Singh A.K., Takata Y., Lin K., Shen J., Lu Y., Kerenyi M.A., Orkin S.H., Chen T. LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice. Nat. Commun. 2015; 6: 10116. DOI:10.1038/ncomms10116.

21. Monget P., Bobe J., Gougeon A., Fabre S., Monniaux D., Dalbies-Tran R. The ovarian reserve in mammals: a functional and evolutionary perspective. Mol. Cell Endocrinol.2012; 356 (1–2): 2–12. DOI:10.1016/j.mce.2011.07.046.

22. Hartshorne G.M., Lyrakou S., Hamoda H., Oloto E., Ghafari F. Oogenesis and cell death in human prenatal ovaries: what are the criteria for oocyte selection? Mol. Hum. Reprod. 2009; 15 (12): 805–819. DOI:10.1093/molehr/gap055.

23. Agarwal A., Aponte-Mellado A., Premkumar B.J., Shaman A., Gupta S. The effects of oxidative stress on female reproduction: a review. Reproductive Biology and Endocrinology. 2012; 10: 49. DOI:10.1186/1477-782710-49.

24. Banerjee S., Saraswat G., Bandyopadhyay S.A., Kabir S.N. Female reproductive aging is master-planned at the level of ovary. PLoS One. 2014; 9 (5): e96210. DOI:10.1371/journal.pone.0096210.

25. Tian N., Zhang L., Zheng J.H., Lv D.Y., Li Y., Ma W.Y. Three-dimensional quantitative analysis of chromosomes in the oocytes of aging mice during meiosis I in vitro. Theriogenology. 2013; 79 (2): 249–256. DOI: 10.1016/j.theriogenology.2012.08.010.

26. Liu Y.X. Advanced studies on ovary physiology in China in the past 30 years. Sheng Li Xue Bao. 2016; 68 (4): 366–384.

27. Pepling M.E. From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis. 2006; 44 (12): 622–632.

28. Yang Y., Fang L.H., Wang X.F. Effect of Foxo3a gene over-expression on the development of rat ovarian granulose cells and in prevention of cisplatin-induced ovarian damage in rats. Nan Fang Yi Ke Da Xue Xue Bao. 2016; 36 (6): 796–801.

29. Albamonte M.S., Willis M.A., Albamonte M.I., Jensen F., Espinosa M.B., Vitullo A.D. The developing human ovary: immunohistochemical analysis of germ-cell-specific VASA protein, BCL-2/BAX expression balance and apoptosis. Hum. Reprod. 2008; 23 (8): 1895–1901. DOI:10.1093/humrep/den197.

30. Gilchrist R.B., Lane M., Thompson J.G. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update. 2008; 14 (2): 159– 177. DOI:10.1093/humupd/dmm040.

31. Peretyatko L.P., Kuzida L.V., Protsenko E.V. Morphology of fetuses and newborns with extremely low body weight. Ivanovo: OAO “Izd. “Ivanovo” Publ., 2005: 384 (in Russ.).

32. Hussein M.R. Apoptosis in the ovary: molecular mechanisms. Human Reproduction Update. 2005; 11 (2): 162–177.

33. Zenkina V.G., Karedina V.S., Solodkova O.A., Mikhaylov A.O. Regulators of apoptosis and the mechanism of their action in the female gonad. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy – International Journal of Applied and Fundamental Research. 2010; 7: 7–14 (in Russ.).

34. McLaren A. Primordial germ cells in the mouse. Dev. Biol. 2003; 262: 1–15.

35. Bowles J., Koopman P. Sex determination in mammalian germ cells: extrinsic versus intrinsic factors. Reproduction. 2010; 139: 943–958. DOI:10.1530/REP-10-0075.

36. Bendsen E., Byskov A.G., Andersen C.Y., Westergaard L.G. Number of germ cells and somatic cells in human fetal ovaries during the first weeks after sex differentiation. Hum. Reprod. 2006; 21 (1): 30–35.

37. Kurilo F.L. Oogenesis in antenatal development in man. Hum. Genet. 1981; 57: 86–92.

38. Modi D.N., Sane S., Bhartiya D. Accelerated germ cell apoptosis in sex chromosome aneuploid fetal human gonads. Mol. Hum. Reprod. 2003; 9 (4): 219–225.

39. Abir R., Orvieto R., Dicker D., Zukerman Z., Barnett M., Fisch B. Preliminary studies on apoptosis in human fetal ovaries. Fertil Steril. 2002; 78 (2): 259–264.

40. Ghafari F., Gutierrez C.G., Hartshorne G.M. Apoptosis in mouse fetal and neonatal oocytes during meiotic prophase one. BMC Dev. Biol. 2007; 7: 87.

41. Wu Y., Zhang Z., Liao X., Wang Z. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development. Biochem. Biophys. Res. Commun. 2015; 466 (3): 599–605. DOI: 10.1016/j.bbrc.2015.09.096.

42. Coccia M.E., Rizzello F. Ovarian reserve. Ann. N.Y. Acad. Sci. 2008; 1127: 27–30. DOI:10.1196/annals.1434.011.

43. Choi J., Jo M., Lee E., Choi D. Induction of apoptotic cell death via accumulation of autophagosomes in rat granulosa cells. Fertility and Sterility. 2011; 95 (4): 1482–1486. DOI:10.1016/j.fertnstert.2010.06.006.

44. Feng Y.M., Liang G.J., Pan B., Qin X.S., Zhang X.F., Chen C.L., Li L., Cheng S.F., De Felici M., Shen W. Notch pathway regulates female germ cell meiosis progression and early oogenesis events in fetal mouse. Cell Cycle. 2014; 13 (5): 782–791. DOI:10.4161/cc.27708.

45. Ene A.C., Park S., Edelmann W., Taketo T. Caspase 9 is constitutively activated in mouse oocytes and plays a key role in oocyte elimination during meiotic prophase progression. Dev. Biol. 2013; 377 (1): 213–223. DOI: 10.1016/j.ydbio.2013.01.027.

46. Hotchkiss R.S., Strasser A., McDunn J.E., Swanson P.E. Сell death. N. Engl. J. Med. 2009; 361 (16): 1570–1583. DOI:10.1056/NEJMra0901217.

47. Zenkina V.G., Solodkova O.A. The participation of nitric oxide in the ovarian cycle. Sovremennye problemy nauki i obrazovaniya – Modern Problems of Science and Education. 2015; 6: Access mode: www.sience-education.ru (in Russ.).

48. Hutt K.J. The role of BH3-only proteins in apoptosis within the ovary. Reproduction. 2015; 149: R81–R89.

49. Myers M., Morgan F.H., Liew S.H., Zerafa N., Gamage T.U., Sarraj M., Cook M., Kapic I., Sutherland A., Scott C.L., Strasser A., Findlay J.K., Kerr J.B., Hutt K.J. PUMA regulates germ cell loss and primordial follicle endowment in mice. Reproduction. 2014; 148 (2): 211– 219. DOI: 10.1530/REP-13-0666.

50. Omari S., Waters M., Naranian T., Kim K., Perumalsamy A.L., Chi M., Greenblatt E., Moley K.H., Opferman J.T., Jurisicova A. Mcl-1 is a key regulator of the ovarian reserve. Cell Death Dis. 2015; 6: e1755. DOI:10.1038/cddis.2015.95.


Review

For citations:


Zenkina V.G. Formation of ovarian reserve. Bulletin of Siberian Medicine. 2018;17(3):197-206. (In Russ.) https://doi.org/10.20538/1682-0363-2018-3-197-206

Views: 1048


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)