Preview

Bulletin of Siberian Medicine

Advanced search

Matrix metalloproteinase 9, superoxide dismutase and lipid peroxidation in preterm newborns with perinatal hypoxia

https://doi.org/10.20538/1682-0363-2011-2-26-29

Abstract

The perinatal hypoxia (PH) in preterm newborns is associated with elevated levels of matrix metalloproteinase 9 (MMP-9), superoxide dismutase (SOD) and thiobarbituric acid reactive substances in umbilical cord blood plasma. The severity of PH Apgar scores correlated with SOD (r = –0,40; p = 0,006) and MMP-9 (r = 0,36; p = 0,023). It is assumed that the SOD increase prevents the reactive oxygen species mediated activation of MMP-9, which destroy the collagen of the basement membrane of the bloodbrain barrier.

About the Authors

Yu. V. Korenovsky
Алтайский государственный медицинский университет
Russian Federation


S. A. Elchaninova
Алтайский государственный медицинский университет
Russian Federation


N. I. Fadeyeva
Алтайский государственный медицинский университет
Russian Federation


References

1. Armstrong D., Browne R. The analysis of free radicals, lipid peroxidases, antioxidant enzymes and compounds related to oxidative stress as applied to the clinical chemistry laboratory//Free Radic. Diagnostic Med. 1994. V. 366. P. 43-58.

2. Boichot C., Walker P.M., Durand C. et al. Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients//Radiology 2006. V. 239. P. 839-848.

3. Chakraborti S., Mandal M., Das S. et al. Regulation of matrix metalloproteinases: an overview//Mol. Cell Biochem. 2003. V. 253. P. 269-285.

4. Cunningham L.A., Wetzel M., Rosenberg G.A. Multiple roles for MMPs and TIMPs in cerebral ischemia//Glia. 2005. V. 50. P. 329-339.

5. Dennery P.A. Role of redox in fetal development and neonatal diseases//Antioxid. Redox Signal. 2004. V. 6. P. 147-153.

6. Dilenge M.E., Majnemer A., Shevell M.I. Long-term developmental outcome of asphyxiated term neonates//J. Child Neurol. 2001. V. 16. P. 781-792.

7. Dröge W. Free radicals in the physiological control of cell function//Physiol. Rev. 2002. V. 82. P. 47-95.

8. Fattman C.L., Schaefer L.M., Oury T.D. Extracellular superoxide dismutase in biology and medicine//Free Radic. Biol. Med. 2003. V. 35, № 3. P. 236-256.

9. Ferriero D.M. Neonatal brain injury//N. Engl. J. Med. 2004. V. 351. P. 1985-1995.

10. Florio P., Perrone S., Luisi S. et al. Increased plasma concentrations of activin A predict intraventricular hemorrhage in preterm newborns//Clin. Chem. 2006. V. 52, № 8. P. 1516-1521.

11. Fridovich I. Superoxide anion radical (O2-), superoxide dismutases, and related matters//J. Biol. Chem. 1997. V. 272, № 30. P. 18515-18517.

12. Galis Z.S., Khatri J.J. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly//Circ. Res. 2002. V. 90. P. 251-262.

13. Gasche Y., Fujimura M., Morita-Fujimura Y. et al. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood-brain barrier dysfunction//J. Cereb. Blood Flow Metab. 1999. V. 19. P. 1020-1028.

14. Gazzolo D., Abella R., Marinoni E. et al. Circulating biochemical markers of brain damage in infants complicated by ischemia reperfusion injury//Cardiovasc. Hematol. Agents Med. Chem. 2009. V. 7. P. 108-126.

15. Greenlee K.J., Werb Z., Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted//Physiol. Rev. 2007. V. 87. P. 69-98.

16. Lacraz S., Nicod L.P., Chicheportiche R. et al. IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes//J. Clin. Invest. 1995. V. 96. P. 2304-2310.

17. Lukes A., Mun-Bryce S., Lukes M. et al. Extracellular matrix degradation by metalloproteinases and central nervous system diseases//Mol. Neurobiol. 1999. V. 19. P. 267-284.

18. Nelson K.K., Melendez J.A. Mitochondrial redox control of matrix metalloproteinases//Free Radic. Biol. Med. 2004. V. 37. № 6. P. 768-784.

19. Peskin A.V., Winterbourn C.C. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1)//Clinica Chimica Acta. 2000. V. 293. P. 157-166.

20. Rajagopalan S., Meng X.P., Ramasamy S. et al. Reactive oxygen species produced by macrophagederived foam cells regulate the activity of vascular matrix metalloproteinases in vitro: implications for atherosclerotic plaque stability//J. Clin. Invest. 1996. V. 98. P. 2572-2579.

21. Romanic A.M., White R.F., Arleth A.J. et al. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size//Stroke. 1998. V. 29. P. 1020-1030.

22. Schulz C.G., Sawicki G., Lemke R.P. et al. MMP2 and MMP9 and their tissue inhibitors in the plasma of preterm and term neonates//Pediatr. Res. 2004. V. 55. P. 794-801.

23. Sunagawa S., Ichiyama T., Honda R. et al. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in perinatal asphyxia//Brain & Development. 2009. V. 31. P. 588-593.

24. Svedin P., Hagberg H., Savman K. et al. Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia//J. Neurosci. 2007. V. 27. P. 1511-1518.


Review

For citations:


Korenovsky Yu.V., Elchaninova S.A., Fadeyeva N.I. Matrix metalloproteinase 9, superoxide dismutase and lipid peroxidation in preterm newborns with perinatal hypoxia. Bulletin of Siberian Medicine. 2011;10(2):26-29. (In Russ.) https://doi.org/10.20538/1682-0363-2011-2-26-29

Views: 590


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)