Preview

Bulletin of Siberian Medicine

Advanced search

ORTHOSTATIC TACHYCARDIA: DIAGNOSTIC AND PROGNOSTIC VALUE OF VERY LOW FREQUENCY OF HEART RATE VARIABILITY

https://doi.org/10.20538/1682-0363-2014-4-136-148

Abstract

Researched physiological mechanisms of development of orthostatic tachycardia syndrome (POTS) on the basis of a complex spectral structure analysis of heart rate variability (HRV), its nonlinear behavior in relationship to energy oscillations, baroreflex and parasympathetic activity. There were several stages of research.

The first stage: created the method of spectral analysis of individual components of Very Low Frequency (VLF). On the basis of comparative Fast Furrier Transform data with Welch filters, autoregression, continuous wavelet analysis and Hilbert–Huang transform, for the first time it was shown that VLF has separate 200, 100 and 50 s oscillations (VLF200, VLF100, VLF50).

The second stage: for evaluation of physiological properties of separate oscillations, was analyzed VLF structure in three groups of patients (100 subjects): with a predominance of parasympathetic activity (HF) in the HRV spectrum; with a dominance of 10 s oscillations (LF); with a severe depression of 
energy in all components of the spectrum. It was established that the individual components of VLF (VLF100 and VLF50) have a certain stability and partial independence from the changes of peripheral autonomic indices (LF/HF) at loads of low intensity.

The third stage: at an active orthostatic test, 20 subjects with orthostatic tachycardia were researched in a comparison to a control group of 20 subjects without tachycardia.

Analyzed the specifics of the VLF structure (VLF100 and VLF50) alone and in a conjunction with the LF and HF, as well as heart rate and blood pressure in subjects with orthostatic tachycardia with a predominance of parasympathetic activity at functional tests of low intensity (seven-test, deep breathing) and at an active orthostatic test. Based on these studies it was concluded that the individual components in the VLF structure (VLF100, VLF50) can demonstrate reciprocal relationships at a load among themselves and in the LF/HF ratio, and play an adaptive role in the mechanisms of autonomic provision.

Revealed the importance of VLF and its components 100 and 50 s oscillations at an orthostatic test in the prognosis of orthostatic tachycardia development. In patients with dysautonomia at high level of VLF100 power, or high VLF50 indices, tachycardia did not develop. In this case, VLF and its component parts did an important adaptive function and conversely, the low VLF50 indices contribute to orthostatic tachycardia.

In the proposed model of the descending neurosomatic control of autonomic regulation of HRV a very important role plays both neurogenic ways of regulation, and neuro-hormonal-metabolic ways, manifested in the complex VLF structure. Regarded the choice of ways and optimal neurosomatic models of regulation at POTS.

About the Authors

A. N. Fleishman
Research Institute for Complex Problems of Hygiene and Occupational Diseases, Siberian Branch of the Russian Academy of Medical Sciences, Novokuznetsk
Russian Federation


I. D. Martynov
Research Institute for Complex Problems of Hygiene and Occupational Diseases, Siberian Branch of the Russian Academy of Medical Sciences, Novokuznetsk
Russian Federation


S. A. Petrovsky
Research Institute for Complex Problems of Hygiene and Occupational Diseases, Siberian Branch of the Russian Academy of Medical Sciences, Novokuznetsk
Russian Federation


T. V. Korablina
Siberian State Industrial University, Novokuznetsk
Russian Federation


References

1. POTS. URL: http://en.wikipedia.org/wiki/Postural_ortho¬sta-tic_tachycardia_syndrome

2. Howraa Abed, Patrick A. Bell, Lie-Xin Wang. “Diagnosis and management of postural orthostatic tachycardia syndrome. A brief review. J. of Geriatric Cardiology, 2012.

3. Freeman R., Wieling W., Axelrod F.B., Benditt D.G., Benarroch E., Biaggioni I., Cheshire W.P., Chelimsky T., Cortelli P., Gibbons C.H., Goldstein D.S., Hainsworth R., Hilz M.J., Jacob G., Kaufmann H., Jordan J., Lipsitz L.A., Levine B.D., Low P.A., Mathias C., Raj S.R., Robertson D., Sandroni P., Schatz I., Schondorff R., Stewart J.M., van Dijk J.G. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin. Auton. Res., 2011.

4. Satish R. Raj, Benjamin D. Levine. Postural Tachycardia Syndrome (POTS) Diagnosis and Treatment: Basics and New Developments. Cardiac Rhythm Management, 2013.

5. Akselrod S., Gordon D., Madwed J.B. et al. Hemodynamic regulation: investigation by spectral analysis. Am. J. Physiol., 1985, vol. 249, pp. 867–875.

6. DuplyakovD.V., Gorbacheva O.V., Golovina G.A. Sindrom postural'noj ortostaticheskoj taxikardii [Syndrom of postural orthostatic tachycardia]. Vestnik aritmologii – Journal of Arhythmology, 2011, pp. 50–55.

7. Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Circulation, 1996, vol. 95, no. 5, pp. 1043–1065.

8. Yamamoto Y., Kiyono K., Struzik Z.R. Measurement, analysis, and interpretation of long-term heart rate variability. Filtration & Separation, 2004, Annual Conference, vol. 3.

9. Plamen Ch. Ivanov, Luis A. Nunes Amaral, Ary L. Goldberger, Shlomo Havlin, Michael G. Rosenblum, H. Eugene Stanley, Zbigniew R. Struzik. From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos, 2001, vol. 11, no. 3.

10. Plamen Ch. Ivanov, Luis A. Nunes Amaral, Ary L. Goldberger, Shlomo Havlin, Michael G. Rosenblum, Zbigniew R. Struzik & H. Eugene Stanley. Multifractality in human heartbeat dynamics. Nature, 1999, vol. 399, pp. 461–465.

11. Sayers B.McA. The analysis of heart rate variability. Ergonom., 1973, vol. 16, pp. 85–97.

12. Akselrod S., Gordon D., Ubel F.A., Shannon D.C., Berger A.C., Cohen R.J. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 1981, vol. 213, pp. 220–222.

13. Taylor J.A., Carr D.L., Myers C.W., Eckberg D.L. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation, 1998, vol. 98, no. 6, pp. 547–555.

14. Fleishman A.N. Medlennye kolebaniya gemodinamiki. Teoriya, prakticheskoe primenenie v klinicheskoj medicine i profilaktike [Slow hemodynamic oscillations. The theory, practical application in clinical medicine and prevention]. Novosibirsk, Nauka, 1999.

15. Kleiger R.E., Miller J.P., Bigger J.T., Moss A.J. Multicenter. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol., 1987, vol. 59, pp. 256–262.

16. Kleschenogov S.A., Fleishman A.N. [The study of the pathophysiological features of pregnancy development in healthy women with different spectral power of HRV, indicators of systemic hemodynamics and body weight]. Inzhenering v medicine: kolebatel'nye processy gemodinamiki. Pul'saciya i flyuktuaciya serdechno – sosudistoj sistemy. Sb. nauch. tr. Simpoz. 30 maya – 1 iyunya 2000 [Engineering in Medicine: oscillatory processes of hemodynamics. Surge and fluctuation of the cardiovascular system: Proceedings of the Symposium. May 30 – June 1, 2000]. Chelyabinsk, 2000, pp.120–128.

17. Zuanetti G., Neilson J.M.M., Latini R., Santoro E., Maggioni A.P., Ewing D.J. Prognostic Significance of Heart Rate Variability in Post–Myocardial Infarction Patients in the Fibrinolytic Era. Circulation, 1996, vol. 94, pp. 432–436.

18. Gerus A.Yu., Fleishman A.N. Osobennosti variabel'nosti ritma serdca u bol'nyx s saxarnym diabetom 2 tipa [Features of heart rate variability at sick with Type 2 Diabetes]. Vestnik Novosibirskogo gosudarstvennogo universiteta. Biologiya, klinicheskaya medicina – Bulletin of the Novosibirsk State University. Biology, Clinical Medicine, 2010, vol. 8, no. 1, pp. 96–100.

19. Fleishman A.N. [Energy deficient state, neuroautonomic regulation of physiological functions and HRV. Theoretical and applied aspects of nonlinear dynamics in physiology and medicine]. Materialy IV Vserossijskogo simpoziuma s mezhdunarodnym uchastiem i II Shkoly – seminara. Medlennye kolebatel'nye processy v organizme cheloveka [Materials of the IV all-Russian Symposium with international participation and II School-seminar "Slow oscillatory processes in the human body. Theoretical and applied aspects of nonlinear dynamics in physiology and medicine]. Novokuzneck, 24–27 maya 2005. pp. 10–19.

20. Radaelli A., Castiglioni P., Centola M., Cesana F., Balestri G., Ferrari A.U., Di Rienzo M. Adrenergic origin of very low frequency blood pressure oscillations in the unanesthetized rat. Am. J. Physiol., 2006, vol. 290, pp. 357–364.

21. Fleishman A.N., Shumeiko N.I., Karpenko S.V., Sin A.F., Dinges V.R., Golik A.S., Anpiligov K.A. [Neuro-autonomic aspects of adaptation rescuers to insulating PPE]. Materialy V vserossijskogo simpoziuma s mezhdunarodnym uchastiem i III Shkoly-seminara. Medlennye kolebatel'nye processy v organizme cheloveka. Teoreticheskie i prakticheskie aspekty nelinejnoj dinamiki v fiziologii i medicine. 15–18 maya 2007 [Materials of the V all-Russian Symposium with international participation and III School-seminar "Slow oscillatory processes in the human body. Theoretical and applied aspects of nonlinear dynamics in physiology and medicine. Novo-kuznetsk, May 15–18, 2007]. 2007, pp. 164–174.

22. Grigoriyev Ye.V., Slepushkin V.V., Mulov A.D. [Metabolic aspects of cardiac rhythm of variability in patients in critical condition]. Medlennye kolebatel'nye processy v organizme cheloveka. Teoriya. prakticheskoe primenenie v klinicheskoj medicine i profilaktike. Trudy II Simpoziuma [Slow oscillatory processes in the human body. Theory. Practical application in clinical medicine and prevention]. Novokuzneck, 1999, pp. 126–130.

23. Shaoyong Su, Rachel Lampert, Forrester Lee, J. Douglas Bremner, Harold Snieder, Linda Jones, Nancy V. Murrah, Jack Goldberg, Viola Vaccarino. Common Genes Contribute to Depressive Symptoms and Heart Rate Variability. Twin Res. Hum. Genet., 2010, vol. 13, no. 1, pp. 1–9.

24. Thayer J.F., Åhs F., Fredrikson M., Sollers J.J., Wager T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience and Biobehavioral Reviews, 2012, vol. 36, pp. 747–756.

25. Thayer J.F., Lane R.D. Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 2009, vol. 33, no. 2, pp. 81–88.

26. Li H., Kwong S., Yang L., Huang D., Xiao Hilbert-Huang transform for analysis of heart rate variability in cardiac health. Pubmed, 2011, 8 (6), pp. 1557–1567.

27. Tom A. Kuusela, Timo J. Kaila and Mika Kähönen. Fine structure of the low-frequency spectra of heart rate and blood pressure. BMC Physiology, 2003, vol. 3, no. 11.

28. Togo F., Kiyono K., Struzik Z.R., Yamamoto Y. Unique very low-frequency heart rate variability during deep sleep in humans. IEEE Trans Biomed., 2006, vol. 53, no. 1, pp. 28–34.

29. Fleishman A.N. Variabel'nost' ritma serdca i medlennye kolebaniya gemodinamiki. Nelinejnye fenomeny v klinicheskoj praktike. 2-e izd., ispr. i dop. [The heart rate variability and slow hemodynamic oscillations. Nonlinear phenomena in clinical practice]. Novosibirsk, SB RAS Publ., 2009. 194 p.

30. Gerus A.Yu., Fleishman A.N. Vozrastno-zavisimye vegetativ¬nye izmeneniya u lic s otyagoshhennoj nasledstvennost'yu po saxarnomu diabetu vtorogo tipa [Age-dependent vegetative changes at relatives of sick with Type 2 Diabetes]. Vestnik Novosibirskogo gosudarstvennogo universiteta. Biologiya, klinicheskaya medicina – Bulletin of the Novosibirsk State University. Biology, Clinical Medicine, 2008, vol. 6, no. 3–2, pp. 97–101.

31. Postnov D.E., Scherbakov P.A., Fleishman A.N. [Using of adaptive wavelet filter for the analysis of change patterns during exercise of low intensity]. Materialy IV Vseros¬sijskogo simpoziuma s mezhdunarodnym uchastiem i II Shkoly-seminara. Medlennye kolebatel'nye processy v organizme cheloveka. Teoreticheskie i prikladnye aspekty nelinejnoj dinamiki v fiziologii i medicine. 24–27 maya 2005 [Materials of the IV all-Russian Symposium with international participation and II School-seminar "Slow oscillatory processes in the human body. Theoretical and applied aspects of nonlinear dynamics in physiology and medicine]. Novokuzneck, 2005, pp. 103–109.

32. Gregory J. Morton, Michael W. Schwartz. Leptin and the CNS Control of Glucose Metabolism. Physiol. Rev., 2011, vol. 91, no. 2, pp. 389–411.

33. Francis Darrel P., Willson K., Georgiadou P. et al. Physiological basis of fractal complexity properties of heart rate variability in man. J. Physiol., 2002, vol. 542, no. 2, pp. 619–629.

34. Fogoros R.N. Diagnosing And Treating Dysautonomia, 2013. URL: http://heartdisease.about.com/od/womenheartdisea-se/a/dysautonomia_diagnosis_treatment.htm

35. Ivanov K.P. Osnovy e'nergetiki organizma: Teoret. i prakt. aspekty [Basics of body energy: theoretical and practical aspects]. AN SSSR. In-t fiziologii im. I.P. Pavlova – The USSR Academy of Sciences. I.P. Pavlov Institute of Physiology. 2004, vol. 4, Pervaya Akad., Nauka.


Review

For citations:


Fleishman A.N., Martynov I.D., Petrovsky S.A., Korablina T.V. ORTHOSTATIC TACHYCARDIA: DIAGNOSTIC AND PROGNOSTIC VALUE OF VERY LOW FREQUENCY OF HEART RATE VARIABILITY. Bulletin of Siberian Medicine. 2014;13(4):136-148. (In Russ.) https://doi.org/10.20538/1682-0363-2014-4-136-148

Views: 2478


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)