Preview

Bulletin of Siberian Medicine

Advanced search

Epicardial adipose tissue: pathophysiology and role in the development of cardiovascular diseases

https://doi.org/10.20538/1682-0363-2018-4-254-263

Abstract

Visceral adipose tissue is an important predictor of cardiovascular diseases, which carry more risk than total fat accumulation. Epicardial fat, a special form of visceral fat deposited around the heart, is considered an important predictor of the risk of cardiovascular disease, taking into account the production and release of adipocytokines. Recently, the number of experimental and clinical data proving the physiological and metabolic significance of epicardial fat is increasing. The thickness and volume of epicardial adipose tissue (EAT) have a strong correlation with obesity, impaired fasting glucose, insulin resistance, metabolic syndrome and atherosclerosis. Moreover, it is now clear that the connection between EAT and the heart is regulated by complex two directional pathways, since not only adipokines regulate cardiac function, but the heart affects EAT via paracrine signaling. Further study of the molecular mechanisms regulating the interaction between the heart and EAT will improve our understanding of the role of the latter in cardiac physiology and the development of disease mechanisms.

About the Authors

E. G. Uchasova
Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases (SIRICICD)
Russian Federation

Uchasova Eveniya G., PhD, Senior Researcher, Laboratory Research Homeostasis

 6, Sosnovy Blv., Kemerovo, 650002



O. V. Gruzdeva
Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases (SIRICICD); Kemerovo State Medical University (КSМU)
Russian Federation

Gruzdeva Olgа V., DM, Нead of the Laboratory Research Homeostasis, SIRICICD; Аssociate Рrofessor, Department of Pathological Physiology, Medical and Clinical Biochemistry, KSMU

 6, Sosnovy Blv., Kemerovo, 650002, 

22, Vorocshilov Str., Kemerovo, 650056



Yu. A. Dyleva
Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases (SIRICICD)
Russian Federation

Dyleva Yuliya A., PhD, Senior Researcher, Laboratory Research Homeostasis

 6, Sosnovy Blv., Kemerovo, 650002



O. E. Akbasheva
Siberian State Medical University (SSMU)
Russian Federation

Akbasheva Olga E., DM, Professor, Department of Biochemistry and Molecular Biology with Course of Clinical Laboratory Diagnostic

2, Mosсow Trakt, Tomsk, 634050



References

1. Alberti K.G., Eckel R.H., Grundy S.M. Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P., Loria C.M., Smith S.C.Jr. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association forthe Study of Obesity. Circulation. 2009; 120 (6): 1640–1645. DOI: 10.1161/CIRCULATIONAHA.

2. Sacks H.S., Fain J.N. Human epicardialadipose tissue: a review. Am. Heart J. 2007; 153: 907–917. DOI: 10.1016/j.ahj.2007.03.019.

3. Iacobellis G., Willens H.J. Echocardiographic epicardial fat: a review of research and clinical applications. J. Am. Soc. Echocardiogr. 2009; 22 (12): 1311–1319. DOI: 10.1016/j.echo.2009.10.013.

4. Payne G.A., Kohr M.C., Tune J.D. Epicardial perivascularadipose tissue as a therapeutic target in obesity-related coronary artery disease. British Journal of Pharmacology. 2012: 165 (3); 659–669. DOI: 10.1111/j.1476-5381.2011.01370.x.

5. Rohrbach S., Troidl C., Hamm C., Schulz R. Ischemia and reperfusion related myocardial inflammation: A Network of Cells and Mediators Targeting the Cardiomyocyte IUBMB. Life. 2015; 67 (2): 110–119. DOI: 10.1002/iub.1352.

6. Şengül C., Özveren O. Epicardialadipose tissue: a review of physiology, pathophysiology and clinical applications. Anadolu Kardiyol. Derg. 2013; 13 (3): 261–265. DOI: 0.5152/akd.2013.075.

7. Iacobellis G., di Gioia C.R., Di V.M., Petramala L., Cotesta D., De Santis V., Vitale D., Tritapepe L., Letizia C. Epicardial adipose tissue and intracoronary adrenomedullin levels in coronary artery disease. Horm. Metab. Res. 2009; 41 (12): 855–860. DOI: 10.1055/s-0029-1231081.

8. Antonopoulos A.S., Antoniades C. The role of epicardial adipose tissue in cardiac biology:classic concepts and emerging roles. J. Physiol. 2017; 595 (12): 3907–3917. DOI: 10.1113/JP273049.

9. Yi W., Sun Y., Yuan Y., Lau W.B., Zheng Q., Wang X., Wang Y., Shang X., Gao E., Koch W.J., Ma X.L. C1q/tumor necrosis factor-related protein-3, a newly identified adipokine, is a novel antiapoptotic, proangiogenic, and cardioprotective molecule in the ischemic mouse heart. Circulation. 2012; 125 (25): 3159–3169. DOI: 10.1161/CIRCULATIONAHA.112.099937.

10. Barber M.C., Ward R.J., Richards S.E., Salter A.M., Buttery P.J., Vernon R.G., Travers M.T. Ovine adipose tissue monounsaturated fatcontent is correlated to depot-specific expression of the stearoyl-CoA desaturasegene. J. Anim. Sci. 2000; 78 (1): 62–68.

11. Pezeshkian M., Noori M., Najjarpour-Jabbari H., Abolfathi A., Darabi M., Darabi M.,Shaaker M., Shahmohammadi G. Fatty acid composition of epicardial and subcutaneous human adipose tissue. Metab. Syndr. Relat. Disord. 2009; 7: 125–131.

12. Payne G.A., Kohr M.C., Tune J.D. Epicardial perivascular adipose tissue as a therapeutic target in obesity-related coronary artery disease. Br. J. Pharmacol. 2012; 165 (3): 659–669. DOI: 10.1111/j.1476-5381.2011.01370.x.

13. Osykhov I.A., Bespalova I.D., Bychkov V.A., Ryazantseva N.V., Kalyuzhin V.V., Afanasyeva S.D., Murashev B.Yu. Intercellular interactions in the pathogenesis of adipose tissue inflammation in metabolic syndrome. Byulleten’ sibirskoy meditsiny – Bulletin of Siberian Medicine. 2013; 12 (6): 144–153 (in Russ.). doi.org/10.20538/1682-0363-2013-6-144-153.

14. Lopaschuk G.D. Metabolic abnormalities in the diabetic heart. Heart Fail. Rev. 2002; 7 (2): 149–159.

15. Iozzo P. Metabolic toxicity of the heart: insights from molecular imaging. Nutr. Metab. Cardiovasc. Dis. 2010; 20 (3): 147–156. DOI: 10.1016/j.numecd.2009.08.011.

16. Iacobellis G., Bianco A.C. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol. Metab. 2011; 22 (11): 450– 457. DOI: 10.1016/j.tem.2011.07.003.

17. Fain J.N., Sacks H.S., Bahouth S.W., Tichansky D.S., Madan A.K., Cheema P.S. Human epicardialadipokine messenger RNAs: comparisons of their expression in substernal, subcutaneous, and omental fat. Metabolism: Сlinical and Еxperimental. 2010; 59 (1): 379–386.

18. Ouwens D.M., Sell H., Greulich S., Eckel J. The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular disease. J. Cell Mol. Med. 2010; 14 (9): 2223–2234. DOI: 10.1111/j.1582-4934.2010.01141.x.

19. Fox C.S., Gona P., Hoffmann U., Porter S.A., Salton C.J., Massaro J.M., Levy D., Larson M.G., D’Agostino R.B.Sr., O’Donnell C.J., Manning W.J. Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation 2009; 119 (12): 1586–1591. DOI: 10.1161/CIRCULATIONAHA.108.828970.

20. Hatem S.N., Sanders P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc. Res. 2014; 102 (2): 205– 213. DOI: 10.1093/cvr/cvu045.

21. Corradi D., Maestri R., Callegari S., Pastori P., Goldoni M., Luong T.V., Bordi C.The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc. Pathol. 2004; 13 (6): 313–316. DOI: 10.1016/j.carpath.2004.08.005.

22. Mazurek T., Zhang L., Zalewski A., Mannion J. D., Diehl J.T., Arafat H., Sarov-Blat L., O’Brien S., Kei per E.A., Johnson A.G., Martin J., Goldstein B.J., Shi Y. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003; 108 (20): 2460–2466.

23. Shibasaki I., Nishikimi T., Mochizuki Y., Yamada Y., Yoshitatsu M., Inoue Y., Kuwata T., Ogawa H., Tsuchiya G., Ishimitsu T., Fukuda H. Greater expression of inflammatory cytokines, adrenomedullin, and natriuretic peptide receptor-C in epicardial adipose tissue in coronary artery disease. Regul. Pept. 2010; 165 (2–3): 210–217. DOI: 10.1016/j.regpep.2010.07.169.

24. Gruzdeva O., Uchasova E., Dyleva Y., Borodkina D., Akbasheva O., Belik E., Karetnikova V., Brel N., Kokov A., Kashtalap V., Barbarash O. Relationships between epicardial adipose tissue thickness and adipo-fibrokine indicator profiles post-myocardial infarction. Cardiovasc. Diabetol. 2018; 17 (1): 40. doi.org/10.1186/s12933-018-0679-y.

25. Verheule S., Tuyls E., Gharaviri A., Hulsmans S., van Hunnik A., Kuiper M., Serroyen J., Zeemering S., Kuijpers N.H., Schotten U. Loss of continuity in the thin epicardial layer because of endomysial fibrosis increases the complexity of atrial fibrillatory conduction. Circ. Arrhythm. Electrophysiol. 2013; 6: 202–211. DOI: 10.1161/CIRCEP.112.975144.

26. Verhagen S.N., Visseren F.L. Perivascular adipose tissue: as a cause of atherosclerosis. Atherosclerosis. 2011; 214: 3–10. DOI: 10.1016/j.atherosclerosis.2010.05.034.

27. Reilly S.N., Jayaram R., Nahar K., Antoniades C., Verheule S., Channon K.M., Alp N.J., Schotten U., Casadei B. Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: implications for the antiarrhythmic effect of statins. Circulation. 2011; 124 (10): 1107–1117. DOI: 10.1161/CIRCULATIONAHA.111.029223.

28. Antoniades C., Demosthenous M., Reilly S., Margaritis M., Zhang M.H., Antonopoulos A., Marinou K., Nahar K., Jayaram R., Tousoulis D., Bakogiannis C,. Sayeed R., Triantafyllou C., Koumallos N., Psarros C., Miliou A., Stefanadis C., Channon K.M., Casadei B. Myocardial redox state predicts in-hospital clinical outcome after cardiac surgery effects of short-term pre-operative statin treatment. J. Am. Coll. Cardiol. 2012; 59 (1): 60–70. DOI: 10.1016/j.jacc.2011.08.062.

29. Mahajan R., Lau D.H., Brooks A.G., Shipp N.J., ManavisJ.,Wood J.P., Finnie J.W., Samuel C.S., Royce S.G., Twomey D.J., Thanigaimani S., Kalman J.M., Sanders P. Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity. J. Am. Coll. Cardiol. 2015; 66 (1): 1–11. DOI: 10.1016/j.jacc.2015.04.058.

30. Chilukoti R.K., Giese A., Malenke W., Homuth G., Bukowska A., Goette A., Felix S.B., Kanaan J., Wollert H.G., Evert K., Verheule S., Jais P., Hatem S.N., Lendeckel U., Wolke C. Atrial fibrillation and rapid acute pacing regulate adipocyte/adipositas-related gene expression in the atria. Int. J. Cardiol. 2015; 187: 604– 613. DOI: 10.1016/j.ijcard.2015.03.072.

31. Uchida Y., Uchida Y., Shimoyama E., Hiruta N., Kishimoto T.,Watanabe S. Pericoronary adipose tissue as storage and supply site for oxidized low-density lipoprotein in human coronary plaques. PLoS One. 2016; 11 (3): e0150862. DOI: 10.1371/journal.pone.0150862.

32. Wang Y., Lau W.B., Gao E., Tao L., Yuan Y., Li R., Wang X., Koch W.J., Ma X.L. Cardiomyocyte-derived adiponectin is biologically active in protecting against myocardial ischemia-reperfusion injury. Am. J. Physiol. Endocrinol. Metab. 2010; 298 (3): 663–670. DOI: 10.1152/ajpendo.00663.2009.

33. Zhou Y., Wei Y., Wang L., Wang X., Du X., Sun Z., Dong N., Chen X. Decreased adiponectin and increased inflammation expression in epicardial adipose tissue in coronary artery disease. Cardiovasc. Diabetol. 2011; 10: 2. DOI: 10.1186/1475-2840-10-2.

34. Lau W.B., Zhang Y., Zhao J., Liu B., Wang X., Yuan Y., Christopher T.A., Lopez B., Gao E., Koch W.J., Ma X.L., Wang Y. Lymphotoxin-alphais a novel adiponectin expression suppressor following myocardial ischemia/ reperfusion. Am. J. Physiol. Endocrinol. Metab. 2013; 304 (6): 661–667. DOI: 10.1152/ajpendo.00012.2013.

35. Shibata R., Numaguchi Y., Matsushita K., Sone T., Kubota R., Ohashi T., Ishii M., Kihara S., Walsh K., Ouchi N., Murohara T. Usefulness of adiponectin to predict myocardial salvage following successful reperfusion in patients with acute myocardial infarction. Am. J. Cardiol. 2008; 101 (12): 1712–171. DOI: 10.1016/j.amjcard.2008.02.057.

36. Wang Y., Lau W.B., Gao E., Tao L., Yuan Y., Li R., Wang X., Koch W.J., Ma X.L. Cardiomyocyte derivedadiponectin is biologically active in protecting against myocardial ischemia-reperfusion injury. Am. J. Physiol. Endocrinol. Metab. 2010; 298 (3): 663–670. DOI: 10.1152/ajpendo.00663.2009.

37. Wong G.W., Wang J., Hug C., Tsao T.S., Lodish, H.F. A family of Acrp30/adiponectin structural and functional paralogs. Proc. Natl. Acad. Sci. USA. 2004; 101: 10302–10307.

38. Smith C.C., Lim S.Y., Wynne A.M., Sivaraman V., Davidson S.M., Mocanu M.M., Hausenloy D.J., Yellon D.M. Failure of the adipocytokine, resistin, to protect the heart from ischemia-reperfusion injury. J. Cardiovasc. Pharmacol. Ther. 2011; 16 (1): 63–71. DOI: 10.1177/1074248410382232.

39. Iacobellis G., di Gioia C.R., Cotesta D., Petramala L., Travaglini C., De Santis V., Vitale D., Tritapepe L., Letizia C.Epicardial adipose tissue adiponectin expression is related to intracoronary adiponectin levels. Horm. Metab Res. 2009; 41 (3): 227–231. DOI: 10.1055/s-0028-1100412.

40. Fain J.N., Sacks H.S., Buehrer B., Bahouth S.W., Garrett E., Wolf R.Y., Carter R.A., Tichansky D.S., Madan A.K. Identification of omentin mRNA in human epicardial adipose tissue: comparison to omentin in subcutaneous, internal mammary artery periadventitial and viscer al abdominal depots. Int. J. Obes (Lond). 2008; 32 (5): 810–815. DOI: 10.1038/sj.ijo.0803790.

41. Galassi A., Reynolds K., He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am. J. Med. 2006; 119 (10): 812–819. DOI: 10.1016/j.amjmed.2006.02.031

42. Bespalova I.D. Leptin as an inducer of inflammation and oxidative stress in metabolic syndrome. Byulleten’ sibirskoy meditsiny – Bulletin of Siberian Medicine. 2014; 13 (1): 20–26 (in Russ.). doi.org/10.20538/1682-0363-2014-1-20-26.

43. Wang T.D., Lee W.J., Shih F.Y., Huang C.H., Chang Y.C., Chen W.J., Lee Y.T., Chen M.F. Relations of epicardial adipose tissue measured by multidetector computed tomography to components of the metabolic syndrome are region-specific and independent of anthropometric indexes and intraabdominal visceral fat. J. Clin. Endocrinol. Metab. 2009; 94 (2): 662–669. DOI: 10.1210/jc.2008-0834.

44. Gorter P.M., van Lindert A.S., de Vos A.M., Meijs M.F., van der Graaf Y., Doevendans P.A., Prokop M., Visseren F.L. Quantification of epicardial and pericoronary fat using cardiac computed tomography; eproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis. 2008; 197 (2): 896–903.

45. Nakazato R., Rajani R., Cheng V.Y., Shmilovich H., Nakanishi R., Otaki Y., Gransar H., Slomka P.J., Hayes S.W., Thomson L.E., Friedman J.D., Wong N.D., Shaw L.J., Budoff M., Rozanski A., Berman D.S., Dey D. Weight change modulates epicardial fat burden: A 4-year serial study with non-contrast computed tomography. Atherosclerosis. 2012; 220 (1): 139–144. DOI: 10.1016/j.atherosclerosis.2011.10.014.

46. Iacobellis G., Willens H.J., Barbaro G., Sharma A.M. Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity. 2008; 16 (4): 887–892. DOI: 10.1038/oby.2008.6.

47. Salgado-Somoza A., Teijeira-Fernandez E., Rubio J., Couso E., Gonzalez-Juanatey J.R., Eiras S. Coronary artery disease is associated with higher epicardialrenitol binding protein 4 (RBP4) and lower glucose transporter (GLUT) 4 levels in epicardial and subcutaneous adipose tissue. Clin. Endocrinol. 2012; 76 (1): 51–58. DOI: 10.1111/j.1365-2265.2011.04140.x.

48. Iacobellis G., Ribaudo M.C., Assael F., Vecci E., Tiberti C., Zappaterreno A., Di Mario U., Leonetti F. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab. 2003; 88: 5163–5168. DOI: 10.1210/jc.2003-030698.

49. Konishi M., Sugiyama S., Sugamura K., Nozaki T., Ohba K., Matsubara J., Matsuzawa Y., Sumida H., Nagayoshi Y., Nakaura T., Awai K., Yamashita Y., Jinnouchi H., Matsui K., Kimura K., Umemura S., Ogawa H. Association of pericardial fat accumulation rather than abdominal obesity with coronary atherosclerotic plaque formation in patients with suspected coronary artery disease. Atherosclerosis. 2010; 209 (2): 573–578. DOI: 10.1016/j.atherosclerosis.2009.10.008.

50. Sade L.E., Eroğlu S., Bozbaş H., Ozbicer S., Hayran M., Haberal A., Mьderrisoğlu H. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis. 2009; 204 (2): 580–585. DOI: 10.1016/j.atherosclerosis.2008.09.038.

51. Bachar G.N., Dicker D., Kornowski R., Atar E. Epicardial adipose tissue as a predictor of coronary artery disease in asymptomatic subjects. Am. J. Cardiol. 2012; 110 (4): 534–538. DOI: 10.1016/j.amjcard.2012.04.024.

52. Kim B.J., Kim B.S., Kang J.H. Echocardiographic epicardial fat thickness is associated with arterial stiffness. Int. J. Cardiol. 2013; 167 (5): 2234–2238. DOI: 10.1016/j.ijcard.2012.06.013.

53. Cheng V.Y., Dey D., Tamarappoo B., Nakazato R., Gransar H., Miranda-Peats R., Ramesh A., Wong N.D., Shaw L.J., Slomka P.J., Berman D.S. Pericardial fat burden on ECG-gated noncontrast CT in asymptomatic patients who subsequently еxperience adverse cardiovascular events. JACC Cardiovasc. Imaging. 2010; 3 (4): 352–360. DOI: 10.1016/j.jcmg.2009.12.013.

54. Salgado-Somoza A., Teijeira-Fernandez E., Fernandez A.L., Gonzalez-Juanatey J.R., Eiras S. Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2010; 299: 202–209. DOI: 10.1152/ajpheart.00120.2010.

55. Rodriguez A., Fortuno A., Gomez-Ambrosi J., Zalba G., Diez J., Fruhbeck G. The inhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascular smooth muscle cells is mediated via a nitric oxide-dependent mechanism. Endocrinology. 2007; 148: 324–331. DOI: 10.1210/en.2006-0940.


Review

For citations:


Uchasova E.G., Gruzdeva O.V., Dyleva Yu.A., Akbasheva O.E. Epicardial adipose tissue: pathophysiology and role in the development of cardiovascular diseases. Bulletin of Siberian Medicine. 2018;17(4):254-263. (In Russ.) https://doi.org/10.20538/1682-0363-2018-4-254-263

Views: 2239


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)