Immune paradigm and immunosuppressive dominance in the pathogenesis of major diseases of the modern man
https://doi.org/10.20538/1682-0363-2019-1-7-17
Abstract
The article discusses the determining role of immunopathogenesis of the main diseases of the modern man (cancer, atherosclerosis, autoimmune, allergic and infectious diseases). In this regard, the concept of «immune paradigm» is introduced. There is evidence that any pathology is based on the classical immune response to the antigen, whether auto- or xenoantigen, with all stages of its development and parallel changes in the state of immune tolerance: its breakdown in cases of autoimmune and allergic diseases and atherosclerosis; its establishment in cases of cancer and infectious diseases. In the meantime, it is emphasized that the immunopathogenesis is based on insufficient or increased function of immunocompetent regulatory cells with suppressive activity. Here the concept of «immunosuppressive dominant» is introduced. Finally, we discuss the need for fundamental changes in treatment of these diseases, with a focus on molecular and cellular immunotherapy methods and development of integrated approaches to their application.
About the Author
V. A. KozlovRussian Federation
Kozlov Vladimir A., DM, Рrofessor, Аcademician of RAS, Scientific Adviser of RIFCI, Vice-president of the Russian Society for Immunology
14, Yadrintsevskaya Str., Novosibirsk, 630099
References
1. Prendergast G.C., Metz R., Muller A.J., Merlo L.M., Mandik-Nayak L. IDO2 in immunomodulation and autoimmune disease. Front Immunol. 2014; 5: 585. DOI: 0.3389/fimmu.2014.00585.
2. Kawashiri S.-Y., Kawashiri A., Okada A., Koga T., Tamai M., Yamasaki S., Nakamura H., Origuchi T., Ida H., Eguchi K. CD4+CD25highCD127low/- Treg cell frequency from peripheral blood correlates with disease activity in patients with rheumatoid arthritis. J. Rheumatol. 2011; 38 (12): 2517–2521. DOI: 10.3899/jrheum.110283.
3. Valencia X., Stephens G., Goldbach-Mansky R., Wilson M., Shevach E.M., Lipsky P.E. TNF downmodulation the function of human CD4+CD25hi T-regulatory cells. Blood. 2006; 108 (1): 253–261. DOI: 10.1182/blood-2005-11-4567.
4. Nakano S., Morimoto S., Suzuki S., Tsushima H., Yamanaka K., Sekigawa I., Takasaki Y. Immunoregulatory role of IL-35 in T cells of patients with rheumatoid arthritis. Rheumatology (Oxford). 2015; 54 (8): 1498–1506. DOI: 10.1093/rheumatology/keu528.
5. Chan J.L., Tang K.C., Patel A.P., Bonilla L.M., Pierobon N., Ponzo N.M., Rameshwar P. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ. Blood. 2006; 107 (12): 4817–4824. DOI: 10.1182/blood-2006-01-0057 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895812/.
6. Yoshizaki A., Miyagaki T., DiLillo D.J., Matsushita T., Horikawa M., Kountikov E.I., Spolski R., Poe J.C., Leonard W.J., Tedder T.F. Regulatory B cells control T cell autoimmunity through IL-21-dependent cognate interactions. Nature. 2012; 491 (7423): 264–268. DOI: 10.1038/nature11501.
7. Kalampokis I., Yoshizaki A., Tedder T.F. IL-10-producing regulatory B cells (B10 cells) in autoimmune diseases. Arthriyis Research & Therapy. 2013; 15 (1): 1. DOI: 10.1186/ar3907.
8. Herrero C., Perez-Simon J.A. Immunomodulatory effect of mesenchymal stem cells. Braz. J. Med. Biol. Res. 2010; 43 (5): 425–430. PMID: 20490429. https://www.ncbi.nlm.nih.gov/pubmed/20490429.
9. Noёl D., Djouad F., Bouffi C., Mrugala D., Jorgensen C. Multipotent mesenchymal stromal cells and immune tolerance. Leukemia & Lymphoma. 2007; 48 (7): 1283–1289. DOI: 10.1080/10428190701361869.
10. Djouad F., Bouffi C., Ghannam S., Noёl D., Jorgensen C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat. Rev. Rheumatol. 2009; 5 (7): 392–399. DOI: 10.1038/nrrheum.2009.104. http://www.nature.com/articles/nrrheum.2009.104
11. Bouffi C., Djouad F., Mathieu M., Noёl D., Jorgensen C. Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit. Rheumatology. 2009; 48 (10): 1185–1189. DOI: 10.1093/rheumatology/kep162.
12. Liotta F., Angeli R., Cosmi L., Filм L., Manuelli C., Frosali F., Mazzinghi B., Maggi L., Pasini A., Lisi V., Santarlasci V., Consoloni L., Angelotti M.L., Romagnani P., Parronchi P., Krampera M., Maggi E., Romagnani S., Annunziato F. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells. 2008; 26 (1): 279– 289. DOI: 10.1634/stemcells.2007-0454.
13. Bacigalupo A., Valle M., Podesta M., Bacigalupo A., Valle M., Podesta M., Pitto A., Zocchi E., De Flora A., Pozzi S., Luchetti S., Frassoni F., Van Lint M.T., Piaggio G. T-cell suррression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Exp. Hematology. 2005; 33 (7): 819–827. DOI: 10.1016/j.exphem.2005.05.006.
14. Liu L.H., Chen B., Sun Z., Ye L.P., Shi B., Jin J.G., Zhao C.H. Immuno-suppressive effects on T cells mediated by mesenchymal stem cells from patients with myelodysplastic syndrome. J. Exp. Hematology. 2008; 16 (2): 299–304. https://wwImmuno-suppressiveeffectsonTcellsw.ncbi.nlm.nih.gov/pubmed/18426653.
15. Perez-Simon J.A., Tabera S., Sarasquete M.E., Diez-Campelo M., Canchado J., Sánchez-Abarca L.I., Blanco B., Alberca I., Herrero-Sánchez C., Caсizo C., San Miguel J.F. Mesenchymal stem cells are fuctionally abnormal in patients with immune thrombocytopenic purpura. Cytotherapy. 2009; 11 (6): 1–8. DOI: 10.3109/14653240903051558.
16. Eusebio M., Kuna P., Kraszula L., Kurczyk M., Pietruczuk M. Allergy-related changes in levels of CD8+CD25+Foxp3 (bright) Treg cells and Foxp3 mRNA expression in peripheral blood: the role of IL-10 or TGF-β. J. Biol. Regul. Homeost. Agents. 2014; 28 (3): 461–470. PMID: 25316133 https://www.ncbi.nlm.nih.gov/pubmed/25316133.
17. Kanamori M., Nakatsukasa H., Okada M., Lu Q., Yoshimura A. Induced Regulatory T Cells: Their Development, Stability, and Applications. Trends Immunol. 2016; 37 (11): 803–811. DOI: 10.1016/j.it.2016.08.012.
18. Gupta P., Vijaean V.K., Bansal S.K. Changes in protein profile of erythrocyte membrane in bronchial asthma. J. Asthma. 2012; 49 (2): 129–133. DOI: 10.3109/02770903.2011.649873.
19. Taleb S., Tedgui A., Mallat Z. Adaptive T cell immune responses and atherogenesis. Current Opinion in Pharmacology. 2010; 10: 197–202. DOI: 10.1016/j.coph.2010.02.003.
20. Nilsson J., Hansson G.K. Autoimmunity in atherosclerosis: a protective response losing control? J. Intern. Med. 2008; 263: 464–478. DOI: 10.1111/j.1365-2796.2008.01945.x.
21. Platten M., Youssel S., Hur E.M., Ho P.P., Han M.H., Lanz T.V., Phillips L.K., Goldstein M.J., Bhat R., Raine C.S., Sobel R.A., Steinman L. Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates Th1- and Th17-mediated autoimmunity. PNAS. 2009; 106 (35): 14948–14953. DOI: 10.1073/pnas.0903958106.
22. Ait-Oufella H., Salomon B.L., Potteaux S., Robertson A.K., Gourdy P., Zoll J., Merval R., Esposito B., Cohen J.L., Fisson S., Flavell R.A., Hansson G.K., Klatzmann D., Tedgui A., Mallat Z. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 2006; 12 (2): 178–180. DOI: 10.1038/nm1343.
23. Taleb S., Tedgui A., Mallat Z. Regulatory T-cell immunity and its relevance to atherosclerosis J. Intern. Med. 2008; 263 (5): 489–499. DOI: 10.1111/j.1365-2796.2008.01944.x.
24. Mor A., Philips M.R., Pillinger M.H. The role of Ras signaling in lupus T lymphocytes: biology and pathogenesis. Clin. Immunol. 2007; 125 (3): 215–223. DOI: 10.1016/j.clim.2007.08.008.
25. McLaren J.E., Ramji D.P. Interferon gamma: a master regulator of atherosclerosis. Cytokine Growth Factor Rev. 2009; 20 (2): 125–135. DOI: 10.1016/j.cytogfr.2008.11.003.
26. Mezrich J.D., Fechner J.H., Zhang X., Johnson B.P., Burlingham W.J., Bradfield C.A. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 2010; 185 (6): 3190–3198. DOI: 10.4049/jimmunol.0903670. http://www.jimmunol.org/content/185/6/3190.
27. Feng J., Zhang Z., Kong W., Liu B., Xu Q., Wang X. Regulatory T cells ameliorate hyperhomocysteinaemia-accelerated atherosclerosis in apoE-/-mice. Cardiovascular Res. 2009; 84: 155–163. DOI: 10.1093/cvr/cvp182.
28. McCully K.S. Homocysteine metabolism, atherosclerosis and diseases of aging. Compr. Physiol. 2016; 6: 471–505. DOI: 10.1002/cphy.c150021 https://www.ncbi.nlm.nih.gov/pubmed/26756640.
29. Wang J., van Dongen H., Scherer H.U., Huizinga T.W.J., Toes R.E. Suppressor activity among CD4, CD25 T cells is discriminated by membrane-bound tumor necrosis factor. Arthritis & Rheumatism. 2008; 58 (6): 1609–1618. DOI: 10.1002/art.23460.
30. Barhoumi T., Kasal D.A., Li M.W., Barhoumi T., Kasal D.A., Li M.W., Shbat L., Laurant P., Neves M.F., Paradis P., Schiffrin E.L. T regulatory lymphocytes prevent angiotensisn II-induced hypertension and vascular injury. Hypertension. 2011; 57 (3): 469–476. DOI: 10.1161/HYPERTENSIONAHA.110.162941.
31. Sasaki N., Yamashita T., Takeda M., Shinohara M., Nakajima K., Tawa H., Usui T., Hirata K-i. Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation. 2009; 120: 1996–2005. DOI: 10.1161/CIRCULATIONAHA.109.863431.
32. Bardhan K., Anagnostou T., Boussiotis V.A. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front immunol. 2016; 7: 1–17. DOI: 10.3389/fimmu.2016.00550 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5149523/.
33. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 2006; 6: 295–307. DOI: 10.1038/nri1806
34. Byrne W.L., Mills K.H., Lederer J.A., O’Sullivan G.C. Targeting regulatory T cells in cancer. Cancer Res. 2011; 71 (22): 6915–6920. DOI: 10.1158/0008-5472.CAN-11-1156. http://cancerres.aacrjournals.org/content/71/22/6915.
35. Chang L.Y., Lin Y.C., Mahalingham J., Huang C.T., Chen T.W., Kang C.W., Peng H.M., Chu Y.Y., Chiang J.M., Dutta A., Day Y.J., Chen T.C., Yeh C.T., Lin C.Y. Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res. 2012; 72 (5): 1092–1102. DOI: 10.1158/0008-5472.can-11-2493. http://cancerres.aacrjournals.org/content/72/5/1092.
36. Becker D.M., Jones S.D., Levine H.L. The therapeutic monoclonal antibody market. MAbs. 2015; 7 (1): 9–14. DOI: 10.4161/19420862.2015.989042.
37. Amedei A., Prisco D., D’ Elios M.M. The use of cytokines and chemokines in the cancer immunotherapy. Recent. Pat. Anticancer. Drug. Discov. 2013; 8 (2): 126–142. PMID: 22894642. https://www.ncbi.nlm.nih.gov/pubmed/22894642.
38. Holdsworth S.R., Gan P.Y. Cytokines: names and numbers you should care about. Clin. J. Am. Soc. Nephrol. 2015; 10 (12): 2243–2254. DOI: 10.2215/cjn.07590714. http://cjasn.asnjournals.org/content/10/12/2243.
39. Mullen L., Adams G., Layward L., Vessillier S., Annenkov A., Mittal G., Rigby A., Sclanders M., Baker D., Gould D., Chernajovsky Y. Latent cytokines for targeted therapy of inflammatory disorders. Expert Opin Drug Deliv. 2014; 11 (1): 101–110. DOI: 10.1517/17425247.2014.863872.
40. Sennikov S.V., Khantakova J.N., Kulikova E.V., Obleukhova I.F., Shevechenko J.A. Modern strategies and capabilities for activation of the immune response against tumor cells. Tumour Biol. 2017; 39 (5): 98380. DOI: 10.1177/1010428317698380.
41. Sennikov S.V., Kulikova E.V., Knauer N.Yu., Khantakova Yu.N. Molecular and cellular mechanisms mediated by dendritic cells involved in the induction of tolerance. Medical Immunology. 2017; 19 (4): 359–374 (in Russ.). DOI: 10.15789/1563-0625-2017-4-359-374.
42. Zhang L., Yu J., Wei W. Advance in Targeted Immunotherapy for Graft-Versus-Host Disease. Front Immunol. 2018; 16 (9): 1087. DOI: 10.3389/fimmu.2018.01087.
43. Liu M., Han Z.C. Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J. Cell. Mol. Med. 2008; 12 (4): 1155–1168. DOI: 10.1111/j.1582-4934.2008.00288.x. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865657/.
44. Derecki N.C., Quinnies K.V., Kipnis J. Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain Behav. Immun. 2011; 25 (3): 379–385. DOI: 10.1016/j.bbi.2010.11.009.
45. Chernykh E., Shevela E., Kafanova M., Sakhno L., Polovnikov E., Ostanin A. Monocyte-derived macrophages for treatment of cerebral palsy: a study of 57 cases. Journal of Neurorestoratology. 2018; 6: 41–47. DOI: 10.2147/jn.s158843.
46. Sicard A., Boardman D.A., Levings M.K. Taking regulatory T-cell therapy one step further. Curr Opin Organ Transplant. 2018. Jul 30. DOI: 10.1097/MOT.0000000000000566. https://insights.ovid.com/crossref?an=00075200-900000000-99107.
47. Seledtsova G.V., Ivanova I.P., Shishkov A.A., Seledtsov V.I. Immune responses to polyclonal T-cell vaccination in patients with progressive multiple sclerosis. J. Immunotoxicol. 2016; 13 (6): 879–884. DOI: 10.1080/1547691X.2016.1223767.
48. Wu Y., Zhang Y., Xu X., Lv P., Gao X. Anti-idiotypic regulatory responses induced by vaccination with DNA encoding murine TCR Valpha5 and Vbeta2. Cell. Mol. Immunol. 2007; 4 (4): 287–293. https://www.ncbi.nlm.nih.gov/pubmed/17764619.
49. Karussis D., Shor H., Yachnin J., Lanxner N., Amiel M., Baruch K., Keren-Zur Y., Haviv O., Filippi M., Petrou P., Hajag S., Vourka-Karussis U., Vaknin-Dembinsky A., Khoury S., Abramsky O., Atlan H., Cohen I.R., Abulafia-Lapid R. T cell vaccination benefits relapsing progressive multiple sclerosis patients: a randomized, double-blind clinical trial. PLoS One. 2012; 7 (12): e50478. DOI: 10.1371/journal.pone.0050478. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522721/.
50. Ilyina N.A., Goiman E.V., Kudaeva O.T., Kolesnikova O.P., Kozhevnikov V.S. Antiergotypic response: role in normal immune response and autoimmune pathology in the experimental model. Medical Immunology. 2011; 13 (1): 29–34 (in Russ.)]. DOI: 10.15789/1563-0625-2011-1-29-34.
Review
For citations:
Kozlov V.A. Immune paradigm and immunosuppressive dominance in the pathogenesis of major diseases of the modern man. Bulletin of Siberian Medicine. 2019;18(1):7-17. (In Russ.) https://doi.org/10.20538/1682-0363-2019-1-7-17