Induced immunosuppression in critical care: diagnostic opportunities in clinical practice
https://doi.org/10.20538/1682-0363-2019-1-18-29
Abstract
The immune system in critical illnesses initiates local inflammation in the damaged area. In the absence of a balance between local and systemic inflammations, an infectious or non-infectious systemic inflammatory response follows, which has a stage of "hyper inflammation - compensatory anti-inflammatory response", that may result in multi-organ failure. The final stage of critical ill-nesses, therefore, will be characterized by induced immunosuppression with the impaired function of neutrophils, monocytes, macrophages and dendritic cells and release of myeloid-derived suppres-sor cells. The aim of the review is to evaluate the contribution of various components of the im-mune response to the formation of induced immune suppression from the perspective of candidate diagnostic markers.
About the Authors
E. V. GrigoryevRussian Federation
Grigoryev Evgeny V., DM, Рrofessor, Deputy Director for Scientific and Clinical Affairs, RICICD; Нead of the Аnesthesiology and Сritical Сare Department, KemSMU
6, Sosnovy Blv., Kemerovo, 650002,
22, Voroshilov Str., Kemerovo, 650000
V. G. Matveeva
Russian Federation
Matveeva Vera G., PhD, Senior Rresearcher, Laboratory for Cell Technologies
6, Sosnovy Blv., Kemerovo, 650002
D. L. Shukevich
Russian Federation
Shukevich Dmitriy L., DM, Нead of Laboratory for Сritical Сare, RICICD; Рrofessor, Аnesthesiology and Сritical Сare Department, KemSMU
6, Sosnovy Blv., Kemerovo, 650002,
22, Voroshilov Str., Kemerovo, 650000
A. S. Radivilko
Russian Federation
Radivilko Artem S., PhD, Senior Rresearcher, Laboratory for Сritical Сare
6, Sosnovy Blv., Kemerovo, 650002
E. A. Velikanova
Russian Federation
Velikanova Elena A., PhD, Researcher, Laboratory for Cell Technologies
6, Sosnovy Blv., Kemerovo, 650002
M. Yu. Khanova
Russian Federation
Khanova Maryam Yu., Researcher, Laboratory for Cell Technologies
6, Sosnovy Blv., Kemerovo, 650002
References
1. Medzhitov R., Schneider D.S., Soares M.P. Disease tolerance as a defense strategy. Science. 2012; 335: 936–941. DOI: 10.1126/science.1214935.
2. Hotchkiss R.S., Monneret G., Payen D. Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013; 13 (3): 260–268. DOI: 10.1016/S1473-3099(13)70001-X.
3. Schefold J.C., Hasper D., Reinke P., Monneret G., Volk H.D. Consider delayed immunosuppression into the concept of sepsis. Crit Care Med. 2008; 36 (11): 3118. DOI: 10.1097/CCM.0b013e31818bdd8f.
4. Ward N.S., Casserly B., Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin. Chest Med. 2008; 29 (4): 617–625. DOI: 10.1016/j.ccm.2008.06.010.
5. Monneret G., Venet F., Kullberg B.J., Netea M.G. ICU-acquired immunosuppression and the risk for secondary fungal infections. Med. Mycol. 2011; 49 (Suppl. 1): S17–S23. DOI: 10.3109/13693786.2010.509744.
6. Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 2013; 13 (12): 862–874. DOI: 10.1038/nri3552.
7. Delano M.J., Thayer T., Gabrilovich S., Kelly-Scumpia K.M., Winfield R.D., Scumpia P.O., Cuenca A.G., Warner E., Wallet S.M., Wallet M.A., O’Malley K.A., Ramphal R., Clare-Salzer M., Efron P.A., Mathews C.E., Moldawer L.L. Sepsis induces early alterations in innate immunity that impact mortality to secondary infection. J. Immunol. 2011; 186 (1): 195–202. DOI: 10.4049/jimmunol.1002104.
8. Stephan F., Yang K., Tankovic J., Soussy C.J., Dhonneur G., Duvaldestin P., Brochard L., Brun-Buisson C., Harf A., Delclaux C. Impairment of polymorphonuclear neutrophil functions precedes nosocomial infections in critically ill patients. Crit. Care Med. 2002; 30 (2): 315–322.
9. Marini O., Costa S., Bevilacqua D., Calzetti F., Tamassia N., Spina C., De Sabata D., Tinazzi E., Lunardi C., Scupoli M.T., Cavallini C., Zoratti E., Tinazzi I., Marchetta A., Vassanelli A., Cantini M., Gandini G., Ruzzenente A., Guglielmi A., Missale F., Vermi W., Tecchio C., Cassatella M.A., Scapini P. Mature CD10+ and immature CD10- neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood. 2017; 129 (10): 1343–1356. DOI: 10.1182/blood-2016-04-713206.
10. Orr Y., Taylor J.M., Bannon P.G., Geczy C., Kritharides L. Circulating CD10-/CD16 low neutrophils provide a quantitative index of active bone marrow neutrophil release. Br. J. Haematol. 2005; 131 (4): 508–519. DOI: 10.1111/j.1365-2141.2005.05794.x.
11. Parihar A., Eubank T.D., Doseff A.I. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J. Innate. Immun. 2010; 2 (3): 204–215. DOI: 10.1159/000296507.
12. Biswas S.K., Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009; 30 (10): 475–487. DOI: 10.1016/j.it.2009.07.009.
13. Biswas S.K., Lopez-Collazo E. Endotoxin tolerance: New mechanisms, molecules and clinical significance. Trends Immunol. 2009; 30 (10): 475–487. DOI: 10.1016/j.it.2009.07.009.
14. Fumeaux T., Dufour J., Stern S., Pugin J. Immune monitoring of patients with septic shock by measurement of intraleukocyte cytokines. Intensive Care Med. 2004; 30 (11): 2028–2037. DOI: 10.1007/s00134-004-2429-8.
15. Cavaillon J.M., Adrie C., Fitting C., Adib-Conquy M. Endotoxin tolerance: is there a clinical relevance? J. Endotoxin Research. 2003; 9 (2): 101–107. DOI: 10.1179/096805103125001487.
16. Lukaszewicz A.C., Grienay M., Resche-Rigon M., Pirracchio R., Faivre V., Boval B., Payen D. Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit. Care Мed. 2009; 37 (10): 2746–2752. DOI: 10.1097/CCM.
17. Delano M.J., Ward P.A. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? J. Clin. Invest. 2016; 126 (1): 23–31. DOI: 10.1172/JCI82224.
18. Pachot A., Cazalis M.A., Venet F., Turrel F., Faudot C., Voirin N., Diasparra J., Bourgoin N., Poitevin F., Mougin B., Lepape A., Monneret G. Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J. Immunol. 2008; 180 (9): 6421–6429. DOI: 10.4049/jimmunol.180.9.6421.
19. Piani A., Hossle J.P., Birchler T., Siegrist C.A., Heumann D., Davies G., Loeliger S., Seger R., Lauener R.P. Expression of MHC class II molecules contributes to lipopolysaccharide responsiveness. Eur. J. Immunol. 2000; 30 (11): 3140–3146. DOI: 10.1002/1521-4141(200011)30:11<3140::AID-IMMU3140>3.0.CO;2-O.
20. Wolk K., Docke W.D., von Baehr V., Volk H.D., Sabat R. Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood. 2000; 96 (1): 218–223.
21. Wolk K., Höflich C., Zuckermann-Becker H., Döcke W.D., Volk H.D., Sabat R. Reduced monocyte CD86 expression in postinflammatory immunodeficiency. Crit. Care Med. 2007; 35 (2): 458–467. DOI: 10.1097/01.CCM.0000254724.54515.2F.
22. Venet F., Lukaszewicz A.C., Payen D., Hotchkiss R., Monneret G. Monitoring the immune response in sepsis: A rational approach to administration of immunoadjuvant therapies. Curr. Opin. Immunol. 2013; 25 (4): 477–483. DOI: 10.1016/j.coi.2013.05.006.
23. Chenouard A., Braudeau C., Cottron N., Bourgoin P., Salabert N., Roquilly A., Josien R., Joram N., Asehnoune K. HLA-DR expression in neonates after cardiac surgery under cardiopulmonary bypass: a pilot study. Intensive Care Medicine Experimental. 2018; 6 (1): 1. DOI: 10.1186/s40635-017-0166-x
24. Fabienne V., Cour M., Demaret J., Guillaume M., Laurent A. Decreased Monocyte HLA-DR Expression in Patients After Non-Shockable out-of-Hospital Cardiac Arrest. Shock. 2016; 46 (1): 33–36. DOI: 10.1097/SHK.0000000000000561.
25. Umansky V., Sevko A. Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron. 2013; 6 (2): 169–177. DOI: 10.1007/s12307-012-0126-7.
26. Bronte V., Brandau S., Chen S.-H., Colombo M.P., Frey A.B., Greten T.F., Mandruzzato S., Murray P.J., Ochoa A., Ostrand-Rosenberg S., Rodriguez P.C., Sica A., Umansky V., Vonderheide R.H., Gabrilovich D.I. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature communications. 2016; 7: 12150. DOI: 10.1038/ncomms12150.
27. Koehn B.H., Apostolova P., Haverkamp J.M., Miller J.S., McCullar V., Tolar J., Munn D.H., Murphy W.J., Brickey W.J., Serody J.S., Gabrilovich D.I., Bronte V., Murray P.J., Ting J.P., Zeiser R., Blazar B.R. GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood. 2015; 126 (13): 1621–1628. DOI: 10.1182/blood-2015-03-634691.
28. Uhel F., Azzaoui I., Grégoire M., Pangault C., Dulong J., Tadiй J.M., Gacouin A., Camus C., Cynober L., Fest T., Le Tulzo Y., Roussel M., Tarte K. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in septic patients. Am. J. Respir. Crit. Care Med. 2017; 196 (3): 315–327. DOI: 10.1164/rccm.201606-1143OC.
29. Gey A. Tadie J.M., Caumont-Prim A., Hauw-Berlemont C., Cynober L., Fagon J.Y., Terme M., Diehl J.L., Delclaux C., Tartour E. Granulocytic Myeloid-Derived Suppressor Cells inversely correlate with plasma arginine and overall survival in critically ill patients. Clin. Exp. Immunol. 2015; 180 (2): 280–288. DOI: 10.1111/cei.12567.
30. Tadié J.M., Cynober L., Peigne V., Caumont-Prim A., Neveux N., Gey A., Guerot E., Diehl J.L., Fagon J.Y., Tartour E., Delclaux C. Arginine administration to critically ill patients with a low nitric oxide fraction in the airways: a pilot study. Intensive Care Med. 2013; 39 (9): 1663–1665. DOI: 10.1007/s00134-013-2984-y.
31. Steinman R.M., Hemmi H. Dendritic cells: translating innate to adaptive immunity. Curr. Top. Microbiol. Immunol. 2006; 311: 17–58.
32. Riccardi F., Della Porta M.G., Rovati B., Casazza A., Radolovich D., De Amici M., Danova M., Langer M. Flow cytometric analysis of peripheral blood dendritic cells in patients with severe sepsis. Cytometry B Clin. Cytom. 2011; 80: 1421. DOI: 10.1002/cyto.b.20540.
33. Guisset O., Dilhuydy M.S., Thiebaut R., Lefevre J., Camou F., Sarrat A., Gabinski C., Moreau J.F., Blanco P. Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med. 2007; 33 (1): 148–152. DOI: 10.1007/s00134-006-0436-7.
34. Hotchkiss R.S., Tinsley K.W., Swanson P.E., Grayson M.H., Osborne D.F., Wagner T.H., Cobb J.P., Coopersmith C., Karl I.E. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J. Immunol. 2002; 168 (5): 2493–2500. DOI: 10.4049/jimmunol.168.5.2493.
35. Pastille E., Didovic S., Brauckmann D., Rani M., Agrawal H., Schade F.U., Zhang Y., Flohe S.B. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. J. Immunol. 2011; 186 (2): 977986. DOI: 10.4049/jimmunol.1001147
36. Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol. 2013; 13 (12): 862–874. DOI: 10.1038/nri3552.
37. Adrie C., Lugosi M., Sonneville R., Souweine B., Ruckly S., Cartier J.C., Garrouste-Orgeas M., Schwebel C., Timsit J.F. OUTCOMEREA study group. Persistent lymphopenia is a risk factor for ICU-acquired infections and for death in ICU patients with sustained hypotension at admission. Annals of Intensive Care. 2017; 7: 30. DOI: 10.1186/s13613-017-0242-0.
38. Inoue S., Suzuki-Utsunomiya K., Okada Y., Taira T., Iida Y., Miura N., Tsuji T., Yamagiwa T., Morita S., Chiba T., Sato T., Inokuchi S. Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit. Care Med. 2013; 41 (3): 810–819. DOI: 10.1097/CCM.0b013e318274645f.
39. De Jager C.P.C., van Wijk P.T.L., Mathoera R.B., de Jongh-Leuvenink J., van der Poll T., Wever P.C. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit. Care. 2010; 14 (5): R192. DOI: 10.1186/cc9309.
40. Forel J.-M., Chiche L., Thomas G., Mancini J., Farnarier C., Cognet C., Guervilly C., Daumas A., Vély F., Xéridat F., Vivier E., Papazian L. Phenotype and functions of natural killer cells in critically-ill septic patients. PLoS One. 2012; 7(12): e50446. DOI: 10.1371/journal.pone.0050446.
41. Souza-Fonseca-Guimaraes F., Parlato M., Fitting C., Cavaillon J.M., Adib-Conquy M. NK cell tolerance to TLR agonists mediated by regulatory T cells after polymicrobial sepsis. J. Immunol. 2012; 188 (12): 5850–5858. DOI: 10.4049/jimmunol.1103616.
42. Grimaldi D., Le Bourhis L., Sauneuf B., Dechartres A., Rousseau C., Ouaaz F., Milder M., Louis D., Chiche J.D., Mira J.P., Lantz O., Pène F. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med. 2014; 40 (2): 192–201. DOI: 10.1007/s00134-013-3163-x.
43. Venet F., Bohe J., Debard A.L., Bienvenu J., Lepape A., Monneret G. Both percentage of gammadelta T lymphocytes and CD3 expression are reduced during septic shock. Crit Care Med. 2005; 33 (12): 2836–2840. DOI: 10.1097/01.CCM.0000189745.66585.AE.
44. Hotchkiss R.S., Nicholson D.W. Apoptosis and caspases regulate death and inflammation in sepsis. Nat. Rev. Immunol. 2006; 6 (11): 813–822. DOI: 10.1038/nri1943.
45. Chen L., Flies D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 2013; 13 (4): 227–242. DOI: 10.1038/nri3405.
46. Zhang Y., Li J., Lou J., Zhou Y., Bo L., Zhu J., Zhu K., Wan X., Cai Z., Deng X. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit. Care. 2011; 15 (1): R70. DOI: 10.1186/cc10059.
47. Huang X., Venet F., Wang Y.L., Lepape A., Yuan Z., Chen Y., Swan R., Kherouf H., Monneret G., Chung C.S., Ayala A. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl. Acad. Sci USA. 2009; 106 (15): 6303–6308. DOI: 10.1073/pnas.0809422106.
48. Guignant C., Lepape A., Huang X., Kherouf H., Denis L., Poitevin F., Malcus C., Chéron A., Allaouchiche B., Gueyffier F., Ayala A., Monneret G., Venet F. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit. Care. 2011; 15 (2): R99. DOI: 10.1186/cc10112.
49. Day C.L., Kaufmann D.E., Kiepiela P., Brown J.A., Moodley E.S., Reddy S., Mackey E.W., Miller J.D., Leslie A.J., DePierres C., Mncube Z., Duraiswamy J., Zhu B., Eichbaum Q., Altfeld M., Wherry E.J., Coovadia H.M., Goulder P.J., Klenerman P., Ahmed R., Freeman G.J., Walker B.D. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006; 443 (7109): 350–354. DOI: 10.1038/nature05115.
50. Hotchkiss R.S., Tinsley K.W., Swanson P.E., Grayson M.H., Osborne D.F., Wagner T.H., Cobb J.P., Coopersmith C., Karl I.E. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J. Immunol. 2002; 168 (5): 2493–2500. DOI: 10.4049/jimmunol.168.5.2493.
51. Huang X., Chen Y., Chung C.S., Yuan Z., Monaghan S.F., Wang F., Ayala A. Identification of B7-H1 as a novel mediator of the innate immune/proinflammatory response as well as a possible myeloid cell prognostic biomarker in sepsis. J. Immunol. 2014; 192 (3): 1091–1099. DOI: 10.4049/jimmunol.1302252.
52. Goyert S.M., Silver J. Editorial: PD-1, a new target for sepsis treatment: better late than never. J. Leukoc. Biol. 2010; 88: 225–226. DOI: 10.1189/jlb.0410240.
53. Wick M., Kollig E., Muhr G., Koller M. The potential pattern of circulating lymphocytes TH1/TH2 is not altered after multiple injuries. Arch. Surg. 2000; 135 (11): 1309–1314. DOI: 10.1001/archsurg.135.11.1309.
54. Zajac A.J., Blattman J.N., Murali-Krishna K., Sourdive D.J.D., Suresh M., Altman J.D., Ahmed R. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 1998; 188 (12): 2205–2213. DOI: 10.1084/jem.188.12.2205.
55. Kuethe J.W., Mintz-Cole R., Johnson B.L. 3rd, Midura E.F., Caldwell C.C., Schneider B.S. Assessing the Immune Status of Critically Ill Trauma Patients by Flow Cytometry. Nurs. Res. 2014; 63 (6): 426–434. DOI: 10.1097/NNR.0000000000000061.
56. Monneret G., Debard A.L., Venet F., Bohe J., Hequet O., Bienvenu J., Lepape A. Marked elevation of human circulating CD41CD251 regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med. 2003; 31 (7): 2068– 2071. DOI: 10.1097/01.CCM.0000069345.78884.0F.
57. Kessel A., Bamberger E., Masalha M., Toubi E. The role of T regulatory cells in human sepsis. J. Autoimmun. 2009; 32 (3–4): 211–215. DOI: 10.1016/j.jaut.2009.02.014.
58. Chen K., Zhou Q.X., Shan H.W., Li W.F., Lin Z.F. Prognostic value of CD4(1)CD25(1) Tregs as a valuable biomarker for patients with sepsis in ICU. World. J. Emerg. Med. 2015; 6 (1): 40–43. DOI: 10.5847/wjem.j.1920-8642.2015.01.007.
59. Huang H., Xu R., Lin F., Bao C., Wang S., Ji C., Li K., Jin L., Mu J., Wang Y., Li L., Sun L., Xu B., Zhang Z., Wang F.S. High circulating CD39(+) regulatory T cells predict poor survival for sepsis patients. Int. J. Infect. Dis. 2015; 30: 57–63. DOI: 10.1016/j.ijid.2014.11.006.
Review
For citations:
Grigoryev E.V., Matveeva V.G., Shukevich D.L., Radivilko A.S., Velikanova E.A., Khanova M.Yu. Induced immunosuppression in critical care: diagnostic opportunities in clinical practice. Bulletin of Siberian Medicine. 2019;18(1):18-29. (In Russ.) https://doi.org/10.20538/1682-0363-2019-1-18-29