Neutrophil granulocytes: new faces of old acquaintances
https://doi.org/10.20538/1682-0363-2019-1-30-37
Abstract
Over the past few decades, thanks to the use of new technologies, the spectrum of functional capabilities of neutrophil granulocytes has been significantly expanded. Their effector potential with respect to infectious agents, including phagocytosis, the production of active forms of oxygen and nitrogen, degranulation with the release of numerous enzymes and antimicrobial peptides, and the formation of extracellular traps were studied in detail. However, it has been found that many of the factors that neutrophils use to directly destroy pathogens have a regulating effect on other cells of the immune system and the neutrophils themselves. In addition, upon activation, neutrophils are capable of synthesizing a number of de novo biologically active molecules. Traditionally considered as inducers of an inflammatory reaction, neutrophils demonstrate the ability to simultaneously incorporate mechanisms that contribute to limiting and resolving inflammation. Ambivalent both helper and suppressor effects of neutrophils on cells of congenital and adaptive immunity testifies to their important immunoregulatory role both in homeostasis and various types of pathology, particularly in the development of malignant tumors.
About the Author
I. I. DolgushinRussian Federation
Dolgushin Ilia I., DM, Professor, Аcademician of RAS, President of SUSMU, Head of the Department of Microbiology, Virology, Immunology and Clinical Laboratory Diagnostics
64, Vorovskogo Str., Chelyabinsk, 454092
References
1. Kulikov V. A., Grebennikov I. N. Of the resolvent, protectins and maresins as: new mediators of inflammation. Vestnik of Vitebsk state medical University. 2012; 11 (1): 25–30. (in Russ.).
2. Kruger P., Saffarzadeh M., Weber A.N., Rieber N., Radsak M., von Bernuth H., Benarafa C., Roos D., Skokowa J., Hartl D. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. PLoS Pathogens. 2015; 11 (3): e1004651. DOI: 10.1371/journal.ppat.1004651.
3. McDonald B., Pittman K., Menezes G.B., Hirota S.A., Slaba I., Waterhouse C.C., Beck P.L., Muruve D.A., Kubes P. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. 2010; 330 (6002): 362–366.
4. Pillay J., Kamp V.M., van Hoffen E., Visser T., Tak T., Lammers J.W., Ulfman L.H., Leenen L.P., Pickkers P., Koenderman L. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac- 1. The Journal of Clinical Investigation. 2012; 122 (1): 327–336.
5. Colom B., Bodkin J.V., Beyrau M., Woodfin A., Ody C., Rourke C., Chavakis T., Brohi K., Imhof B.A., Nourshargh S. Leukotriene B4-neutrophil elastase axis drives neu-trophil reverse transendothelial cell migration in vivo. Immunity. 2015; 42 (6): 1075–1086. DOI: 10.1016/j.immuni.2015.05.010
6. Woodfin A., Voisin M.B., Beyrau M., Colom B., Caille D., Diapouli F.M., Nash G.B., Chavakis T., Albelda S.M., Rainger G.E., Meda P., Imhof B.A., Nourshargh S. The junctional adhesion molecule (JAM-C) regulates polarized transendothelial migration of neutrophils in vivo. Nature Immunology. 2011; 12 (8): 761–769. DOI: 10.1038/ni.2062.
7. Jenne C.N., Liao S., Singh B. Neu-trophils: multitasking first responders of immunity and tissue homeostasis. Cell and Tissue Research. 2018; 371 (3): 395–397. DOI: 10.1007/s00441-018-2802-5.
8. Lopez-Lago M.A., Posner S., Thodima V.J., Molina A.M., Motzer R.J., Chaganti R.S. Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression. Oncogene. 2013; 32 (14): 1752–1760.
9. De Kleijn S., Langereis J.D., Leentjens J., Kox M., Netea M.G., Koenderman L., Ferwerda G., Pickkers P., Hermans P.W. IFN-γ-stimulated neutrophils suppress lymphocyte proliferation through ex-pression of PD-L1. PLoS ONE. 2013; (8): e72249.
10. Kruger P., Saffarzadeh M., Weber A.N., Rieber N., Radsak M., von Bernuth H., Benarafa C., Roos D., Skokowa J., Hartl D. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. PLoS Pathogens. 2015; 11 (3): e1004651. DOI: 10.1371/journal.ppat.1004651.
11. Cross A., Bucknall R.C., Cassatella M.A., Edwards S.W., Moots R.J. Synovial fluid neutrophils transcribe and express class II major histocompatibility complex molecules in rheumatoid arthritis. Arthritis and Rheumatology. 2003; 48, (10): 2796–2806.
12. Puga I., Cols M., Barra C.M., He B., Cassis L., Gentile M., Comerma L., Chorny A., Shan M., Xu W., Magri G., Knowles D.M., Tam W., Chiu A., Bussel J.B., Serrano S., Lorente J.A., Bellosillo B., Lloreta J., Juanpere N., Alameda F., Barу T., de Heredia C.D., Torán N., Catalа A., Torrebadell M., Fortuny C., Cusн V., Carreras C., Diaz G.A., Blander J.M., Farber C.M., Silvestri G., Cunningham-Rundles C., Calvillo M., Dufour C., Notarangelo L.D., Lougaris V., Plebani A., Casanova J.L., Ganal S.C., Diefenbach A., Arуstegui J.I., Juan M., Yagüe J., Mahlaoui N., Donadieu J., Chen K., Cerutti A. B cell–helper neutrophils stimulate immunoglobulin diversification and production in the marginal zone of the spleen. Nature Immunology. 2011; 13 (2): 170–180. DOI: 10.1038/ni.2194.
13. Valladeau J., Saeland S. Cutaneous dendritic cells. Seminars in Immunologyю. 2005;17 (4): 273–283.
14. Nicolás-Ávila J.Á., Adrover J.M., Hidalgo A. Neutrophils in homeostasis, immunity, and cancer. Immunity. 2017; 46 (1): 15–28. DOI: 10.1016/j.immuni.2016.12.012.
15. Powell D.R., Huttenlocher A. Neu-trophils in the tumor microenvironment. Trends in Immunology. 2016; 37 (1): 41–52. DOI: 10.1016/j.it.2015.11.008.
16. Shaul M.E., Fridlender Z.G. Cancer related circulating and tumor-associated neutrophils – subtypes, sources and function. The FEBS Journal. 2018. DOI: 10.1111/ febs.14524.
17. Fridlender Z.G., Albelda S.M. Tumor-associated neutrophils: friend or foe? Carcinogenesis. 2012; 33 (5): 949– 955. DOI: 10.1093/carcin/bgs123.
18. Singhal S., Bhojnagarwala P.S., O’Brien S., Moon E.K., Garfall A.L., Rao A.S., Quatromoni J.G., Stephen T.L., Litzky L., Deshpande C., Feldman M.D., Hancock W.W., Conejo-Garcia J.R., Albelda S.M., Eruslanov E.B. Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell. 2016; 30 (1): 120–135. DOI: 10.1016/j.ccell.2016.06.001.
19. Semyonova A.B., Kazachkov E.L., Dolgushin I.E., Vazhenin A.V. formation of extracellular DNA networks by neutrophils as an additional diagnostic criterion of the degree of malignancy of the breast cancer. Ural Medical Journal. 2016; 3 (136): 70–73. (in Russ.).
20. Park S.A., Hyun Y.M. Neutrophil ex-travasation cascade: what can we learn from two-photon intravital im-aging? Immune Network. 2016; 16 (6): 317–321.
21. Grayson P.C., Kaplan M. At the Bench: Neutrophils extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J. Leukoc Biol. 2016; 99 (2): 253–264. DOI: 10.1189/jlb.5BT0615-247R.
22. Escors D., Kochan G. Myeloid-derived suppressor cells and their “inconvenient” plasticity. Journal of Immunological Sciences. 2018; 2 (2): 42–47.
Review
For citations:
Dolgushin I.I. Neutrophil granulocytes: new faces of old acquaintances. Bulletin of Siberian Medicine. 2019;18(1):30-37. (In Russ.) https://doi.org/10.20538/1682-0363-2019-1-30-37