Telomere length distribution on individual chromosome arms in patients with bronchial asthma
https://doi.org/10.20538/1682-0363-2019-1-164-174
Abstract
Objective. The purpose of this study was to evaluate the length of telomeres in the arms of individual chromosomes in patients with bronchial asthma (BA).
Materials and methods. The study included patients with BA (n = 10, the mean age (44 ± 8.2) years) and healthy donors (n = 10, the mean age (44 ± 8.4) years). Metaphase spreads obtained from peripheral blood mononuclear cells were used. At the time of sampling BA patients received treatment at the Clinic of Immunopathology, Novosibirsk. BA was diagnosed by physicians according to GINA-2016. For measurement of telomere length on individual chromosome arms we used quantitative fluorescent in situ hybridization with a PNA-probe specific for telomeres. We used inverted DAPI banding for chromosome identification (according to ISCN-2013). For each individual 5 metaphase cells were analyzed. We applied the newly developed MeTeLen software to estimate the telomere repeats quantity (http:// www.bionet.nsc.ru/en/development/application-development/development-of-a-computer/metelen.html) in metaphase images. For enhanced image analysis compared with the previously developed programs, we included estimation of background signal and correction of defects of the optical system.
Results. Comparing of telomere length show, that telomeres in the certain chromosome arms (4q, 5q, 9p, 10 q, 11p, 13p, 15q, 18q, 19q) in BA are significantly shorter than in corresponding group of donors (p < 0.05, Mann – Whitney U-test). For both studied groups we also evaluated telomere sequences shortened and elongated relative to the average telomere length in the group (p < 0.05, Wilcoxon-signed-runk test). The following differences and similarities between the telomere profiles of patients and donors were determined: the telomere sequences 4p, 6q, 8p were elongated and 2q, 9q, 11p, 15q were shortened relative to the average telomere length in BA patients. Moreover, this telomere sequences did not differ from the average telomere length in the group of donors. At the same time, the telomere sequences 12p, 16p, 17p, 19p were significantly shorter, and 3p was longer than the average telomere length in both groups.
Conclusions. We guess, that the observed significant shortening of telomere length on individual chromosome arms in BA, as compared to donors, is relevant in pathogenesis of this disorder. The revealed features of telomere profile of patients with BA may be a result of different telomere length maintenance mechanisms and may influence to the development of asthma that needs further study.
About the Authors
M. Sh. BarkovskayaRussian Federation
Barkovskaya Margarita Sh., Junior Researcher, Laboratory of Clinical Immunopathology
14, Yadrintsevskaya Str., Novosibirsk, 630099
E. A. Blinova
Russian Federation
Blinova Elena A., PhD, Senior Researcher, Laboratory of Clinical Immunopathology
14, Yadrintsevskaya Str., Novosibirsk, 630099
J. V. Konyahina
Russian Federation
Konyahina Julia V., Resident Physician
14, Yadrintsevskaya Str., Novosibirsk, 630099
M. I. Leonova
Russian Federation
Leonova Marina I., Allergist-immunologist, Department of Allegology
14, Yadrintsevskaya Str., Novosibirsk, 630099
V. M. Nepomniashchikch
Russian Federation
Nepomniashchikch Vera M., Allergist-immunologist, Department of Allegology
14, Yadrintsevskaya Str., Novosibirsk, 630099
D. V. Demina
Russian Federation
Demina Darja V., PhD, Allergist-immunologist, Head of the Department of Allegology
14, Yadrintsevskaya Str., Novosibirsk, 630099
V. S. Kozhevnikov
Russian Federation
Kozhevnikov Vladimir S., DM, Professor, Chief Researcher of Laboratory of Clinical Immunopathology
14, Yadrintsevskaya Str., Novosibirsk, 630099
V. A. Kozlov
Russian Federation
Kozlov Vladimir A., DM, Professor, Аcademician of RAS, Scientific Supervisor of RIFCI, Head of the Laboratory of Clinical Immunopathology, RIFCI
14, Yadrintsevskaya Str., Novosibirsk, 630099
References
1. Tsuji T., Aoshiba K., Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am. J. Respir. Crit. Care Med. 2006; 174 (8): 886–893. DOI: 10.1164/rccm.200509-1374OC.
2. Albrecht E., Sillanpää E., Karrasch S., Couto Alves A., Codd V., Hovatta I, Buxton J.L., Nelson C.P., Broer L., Hägg S., Mangino M., Willemsen G., Surakka I., Ferreira M.A.R., Amin N., Oostra B.A., Bäckmand H.M., Peltonen M., Sarna S., Rantanen T., Sipilд S., Korhonen T., Madden P.A., Gieger C., Jörres R.A., Heinrich J., Behr J., Huber R.M., Peters A., Strauch K., Wichmann H.E., Waldenberger M., Blakemore A.I., de Geus E.J., Nyholt D.R., Henders A.K., Piirilä P.L., Rissanen A., Magnusson P.K., Viсuela A., Pietiläinen K.H., Martin N.G., Pedersen N.L., Boomsma D.I., Spector T.D., van Duijn C.M., Kaprio J., Samani N.J., Jarvelin M.R., Schulz H. Telomere length in circulating leukocytes is associated with lung function and disease. Eur. Respir. J. 2014; 43 (4): 983–992. DOI: 10.1183/09031936.00046213.
3. Birch J., Anderson R.K., Correia-Melo C., Jurk D., Hewitt G., Marques F.M., Green N.J., Moisey E., Birrell M.A., Belvisi M.G., Black F., Taylor J.J., Fisher A.J., De Soyza A., Passos J.F. DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. Am. J. Physiol. Lung. Cell Mol. Physiol. 2015; 309 (10): L1124–L1137. DOI: 10.1152/ajplung.00293.2015.
4. Moyzis R.K., Buckingham J.M., Cram L.S., Dani M., Deaven L.L., Jones M.D., Meyne J., Ratliff R.L., Wu J.R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA. 1988; 85 (18): 6622–6626. DOI: 10.1073/pnas.85.18.6622.
5. Hayflick L. The limited in vitro lifetime of human diploid strains. Exp. Cell Res. 1965; 37 (3): 614–636. DOI: 10.1016/0014-4827(65)90211-9.
6. Rufer N., Brümmendorf T.H., Kolvraa S., Bischoff C., Christensen K., Wadsworth L., Schulzer M., Lansdorp P.M. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. 1999; 190 (2): 157–167. DOI: 10.1084/jem.190.2.157.
7. Weng N. Levine B.L., June C.H., Hodes R.J. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc. Natl. Acad. Sci. USA. 1995; 92 (24): 11091–11094. DOI: 10.1073/pnas.92.24.11091.
8. Burns J.B., Lobo S.T., Bartholomew B.D. In vivo reduction of telomere length in human antigen-reactive memory T cells. Eur. J. Immunol. 2000; 30 (7): 1894–1901. DOI: 10.1002/1521-4141(200007)30:7<1894::AID-IMMU1894>3.0.CO;2-N.
9. Andrews N.P., Fujii H., Goronzy J.J., Weyand C.M. Telomeres and immunological diseases of aging. Gerontology. 2010; 56 (4): 390–403. DOI: 10.1159/000268620.
10. Schönland S.O., Lopez C., Widmann T., Zimmer J., Bryl E., Goronzy J.J., Weyand C.M. Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. PNAS. 2003; 100 (23): 13471–13476. DOI: 10.1073/pnas.2233561100.
11. Borisov V.I., Demakov S.A., Nepomnyaschikh V.M., Leonova M.I., Barovskaya N.A., Kozhevnikov V.S. Decreasing of DNA telomere regions in subpopulations of CD4 + and CD8 + lymphocytes in atopic diseases. Omsk Scientific Bulletin. 2007; 3 (61): 172–174 (in Russ.).
12. Borisov V.I., Demakov S.A., Nepomnyaschikh V.M., Leonova M.I., Demina D.V., Barovskaya N.A., Kozhevnikov V.S. Some features of changing telomere length in lymphocytes from the patients with bronchial asthma. Medical Immunology. 2009; 11 (6): 523–530 (in Russ.).
13. Kyoh S., Venkatesan N., Poon A.H., Nishioka M., Lin T., Baglole C.J., Eidelman D.H., Hamid Q. Are leukocytes in asthmatic patients aging faster? A study of telomere length and disease severity. J. Allergy Clin. Immunol. 2013; 132 (2): 480–482. DOI: 10.1016/j.jaci.2013.02.010.
14. Belsky D.W., Shalev I., Sears M.R, Hancox R.J., Lee Harrington H., Houts R., Moffitt T.E., Sugden K., Williams B., Poulton R., Caspi A. Is chronic asthma associated with shorter leukocyte telomere length at midlife? Am. J. Respir. Crit. Care Med. 2014; 190 (4): 384–391. DOI: 10.1164/rccm.201402-0370OC.
15. Lansdorp P.M.,Verwoerd N.P., van de Rijke F.M., Dragowska V., Little M.T., Dirks R.W., Raap A.K., Tanke H.J. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 1996; 5 (5): 685–691. DOI: 10.1093/hmg/5.5.685.
16. Graakjaer J.J., Der-Sarkissian H., Schmitz A., Bayer J., Kolvraa G.T.S., Londono-Vallejo J.A. Allele-specific relative telomere lengths are inherited. Hum. Genet. 2006; 119 (3): 344–350. DOI: 10.1007/s00439-006-0137-x.
17. Xing J., Ajani J.А., Chen M., Izzo J., Lin J., Chen Z., Gu J., Wuet X. Constitutive short telomere length of chromosome 17p and 12q but not 11q and 2p are associated with an increased risk for esophageal cancer. Cancer Prev. Res. 2009; 2 (5): 459–465. DOI: 10.1158/1940-6207.
18. Zheng Y.L., Zhou X., Loffredo C.A., Shields P.G., Sun B. Telomere deficiencies on chromosomes 9p, 15p, 15q and Xp: potential biomarkers for breast cancer risk. Hum. Mol. Genet. 2010; 20 (2): 378–386. DOI: 10.1093/hmg/ddq461.
19. Blinova E.A., Zinnatova E.V., Barkovskaya M.Sh., Borisov V.I., Sizikov A.E., Kozhevnikov V.S., Rubtsov N.B., Kozlov V.A. Telomere length of individual chromosomes in patients with rheumatoid arthritis. Bull. Exp. Biol. Med. 2016; 160 (6): 779–782. DOI: 10.1007/s10517-016-3308-3.
20. Bangs C.D., Donlon T.A. Metaphase chromosome preparation from cultured peripheral blood cells. Curr. Protoc. Hum. Genet. 2005; 45 (1): 4.1.1–4.1.19. DOI: 10.1002/0471142905.hg0401s45.
21. Barkovskaya M.Sh., Bogomolov A.G., Knauer N.Yu., Rubtsov N.B., Kozlov V.A. Development of software and modification of Q-FISH protocol for estimation of individual telomere length in immunopathology. JBCB. 2017; 15 (2): 1650041. DOI: 10.1142/s0219720016500414.
22. Costenbader K.H., Prescott J., Zee R.Y., DeVivo I. Immunoscenecence and rheumatoid arthritis: does telomere shortening predict impending disease? Autoimmun. Rev. 2011; 10 (9): 569–573. DOI: 10.1016/j.autrev.2011.04.034.
23. Kaul Z., Cesare A.J., Huschtscha L.I., Neumann A.A., Reddel R.R. Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep. 2011; 13 (1): 52–59. DOI: 10.1038/embor.2011.227.
24. Baur J.A., Zou Y., Shay J.W., Wright W.E. Telomere position effect in human cells. Science. 2001; 292 (5524): 2075–2077. DOI: 10.1126/science.1062329.
25. Lou Z., Jun W., Riethman H., Baur J.A., Voglauer R., 25. Shay J.W., Wright W.E. Telomere length regulates ISG15 expression in human cells. Aging. 2009; 1 (7): 608–621. DOI: 10.18632/aging.100066.
26. Stadler G., Rahimov F., King O.D., Chen J., Robin J.D., Wagner K.R., Shay J.W., Emerson C.P., Wright W.E. Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy. Nat. Struct. Mol. Biol. 2013; 20 (6): 671–678. DOI: 10.1038/nsmb.2571.
27. Robin J.D., Ludlow A.T., Chen M., Magdinier F., Batten K., Holohan B., Stadler G., Wagner K.R., Shay J.W., Wright W.E. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 2014; 28 (22): 2464–2476. DOI: 10.1101/gad.251041.114.
28. Hakonarson H., Halapi E. Genetic analyses in asthma: current concepts and future directions. Am. J. Pharmacogenomics. 2002; 2 (3): 155–166. DOI: 10.2165/00129785-200202030-00001.
29. Bonser L.R., Erle D.J. Airway mucus and asthma: the role of MUC5AC and MUC5B. J. Clin. Med. 2017; 6 (12): 112. DOI: 10.3390/jcm6120112.
30. Njajou O.T., Cawthon R.M., Damcott C.M., Wu S.H., Ott S., Garant M.J., Blackburn E.H., Mitchel B.D., Shuldiner A.R., Hsueh W.C. Telomere length is paternally inherited and is associated with parental lifespan. PNAS. 2007; 104 (29): 12135–12139. DOI: 10.1073/pnas.0702703104.
31. Broer L., Codd V., Nyholt D.R., Deelen J., Mangino M., Willemsen G., Albrecht E, Amin N., Beekman M., de Geus E.J.C., Henders A., Nelson C.P., Steves C.J., Wright M.J., de Craen A.J.M., Isaacs A., Matthews M., Moayyeri A., Montgomery G.W., Oostra B.A., Vink J.M., Spector T.D., Slagboom P.E., Martin N.G., Samani N.J., van Duijn C.M., Boomsma D.I. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet. 2013; 21 (10): 1163–1168. DOI: 10.1038/ejhg.2012.303.
32. Colmegna I., Diaz-Borjon A., Fujii H., Schaefer L., Goronzy J.J., Weyand C.M. Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis Rheum. 2008; 58 (4): 990–1000. DOI: 10.1002/art.23287.
33. Martens U.M., Zijlmans J.M., Poon S.S., Dragowska W., Yui J., Chavez E.A., Ward R.K., Lansdorp P.M. Short telomeres on human chromosome 17p. Nat. Genet. 1998; 18 (1): 76–80. DOI: 10.1038/ng0198-018.
34. Morrish T.A., Greider C.W. Short telomeres initiate telomere recombination in primary and tumor cells. PLoS Genet. 2009; 5 (1): 1–15. DOI: 10.1371/journal.pgen.1000357.
35. Pickett H.А., Henson J.D., Au A.Y., Neumann A.A., Reddel R.R. Normal mammalian cells negatively regulate telomere length by telomere trimming. Hum. Mol. Genet. 2011; 20 (23): 46844692. DOI: 10.1093/hmg/ddr402.
36. Zhdanova N.S., Rubtsov N.B. Telomere recombination in normal mammalian cells. Russian Journal of Genetics. 2016; 52 (1): 8–16. DOI: 10.1134/S1022795416010142.
Review
For citations:
Barkovskaya M.Sh., Blinova E.A., Konyahina J.V., Leonova M.I., Nepomniashchikch V.M., Demina D.V., Kozhevnikov V.S., Kozlov V.A. Telomere length distribution on individual chromosome arms in patients with bronchial asthma. Bulletin of Siberian Medicine. 2019;18(1):164-174. (In Russ.) https://doi.org/10.20538/1682-0363-2019-1-164-174