Preview

Bulletin of Siberian Medicine

Advanced search

Regulatory T-lymphocyte subsets in patients with HIV-infection receiving highly active antiretroviral therapy

https://doi.org/10.20538/1682-0363-2019-1-247-256

Abstract

Background. The reason why HIV-infected patients receiving highly active antiretroviral therapy (HAART) suffer from the increased immune activation remains elusive. Regulatory T-cells (Treg) are able to control immune activation, but their quantity may vary due to the infection. The aim of this work was to estimate the number and subsets of Tregs in HIV-positive patients receiving virologically effective HAART.

Materials and methods. The CD4+ T-lymphocyte (CD3+CD4+) and Treg (CD3+CD4+FOXP3+) quantities were determined by flow cytometry. Treg subsets were assessed based on the FOXP3 expression level. The state of T-cell activation was established according to the simultaneous expression of CD38 and HLA-DR molecules.

Results. It was shown that HIV-positive patients compared to healthy people have reduced CD4+ T-lymphocyte counts despite virologically effective HAART. At the same time in HIV-infected people, Treg absolute numbers were only slightly decreased. Moreover, the major part of Treg pool in their blood consisted of lymphocytes with a high level of FOXP3 expression that corresponded to the phenotype of cells with the highest suppressor activity. However, an increased relative amount of activated CD4+ T-lymphocytes was retained in the HIV-infected individuals’ blood.

Conclusion. In HIV-infected patients who received HAART in time and whose treatment resulted in an effective HIV viral load suppression and a satisfactory CD4+ T-cell counts increase, a relatively large pool of peripheral Tregs is maintained. However, these lymphocytes are not enough to fully control immune activation that develops against the background of chronic lentivirus infection.

About the Authors

V. A. Chereshnev
Perm Federal Research Center Ural Branch Russian Academy of Sciences; Perm State University; Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences
Russian Federation

Chereshnev Valery A., DМ, Academician of RAS, Chief Researcher, PFRC UB RAS; Head of the Department, PSU, Perm, Russian Federation; Chief Researcher, IIF UB RAS, President of Russian Society for Immunology

13a, Lenin Str., Perm, 614990, 

15, Bukirev Str., Perm, 614990, 

106, Pervomayskaya Str., Yekaterinburg, 620049




E. V. Saidakova
Perm Federal Research Center Ural Branch Russian Academy of Sciences; Perm State University
Russian Federation

Saidakova Evgeniya V., PhD, Junior Researcher, PFRC UB RAS, Perm, Russian Federation; Associate Professor, PSU

13a, Lenin Str., Perm, 614990, 

15, Bukirev Str., Perm, 614990



L. B. Korolevskaya
Perm Federal Research Center Ural Branch Russian Academy of Sciences
Russian Federation

Korolevskaya Larisa B., PhD, Researcher

13a, Lenin Str., Perm, 614990



N. G. Shmagel
Perm Federal Research Center Ural Branch Russian Academy of Sciences; Perm Regional Center for Protection against AIDS and Infectious Diseases
Russian Federation

Shmagel Nadezhda G., PhD., Senior Researcher, PFRC UB RAS, Perm, Russian Federation; Immunologist, Perm AIDS Center

13a, Lenin Str., Perm, 614990, 

21, Sviyazeva Str., Perm, 614065



K. V. Shmagel
Perm Federal Research Center Ural Branch Russian Academy of Sciences; Perm State University
Russian Federation

Shmagel Konstantin V., DМ, Head of the Department, PFRC UB RAS, Perm, Russian Federation; Professor, PSU

13a, Lenin Str., Perm, 614990, 

15, Bukirev Str., Perm, 614990



References

1. Giorgi J.V., Hultin L.E., McKeating J.A., Johnson T.D., Owens B., Jacobson L.P. et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J. Infect. Dis. 1999; 179 (4): 859–870. DOI: 10.1086/314660. http://www.ncbi.nlm.nih.gov/pubmed/10068581. http://jid.oxfordjournals.org/content/179/4/859.full.pdf.

2. Deeks S.G., Kitchen C.M., Liu L., Guo H., Gascon R., Narvaez A.B. et al. Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood. 2004; 104 (4): 942–947. DOI: 10.1182/blood-2003-09-3333. http://www.ncbi.nlm.nih.gov/pubmed/15117761.

3. Evans T.G., Bonnez W., Soucier H.R., Fitzgerald T., Gibbons D.C., Reichman R.C. Highly active antiretroviral therapy results in a decrease in CD8(+) T cell activation and preferential reconstitution of the peripheral CD4(+) T cell population with memory rather than naive cells. Antivir. Res. 1998; 39 (3): 163–173. DOI: 10.1016/S0166-3542(98)00035-7.<GotoISI>://WOS:000076934000002.

4. Neuhaus J., Jacobs D.R., Baker J.V., Calmy A., Duprez D., La Rosa A. et al. Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J. Infect. Dis. 2010; 201 (12): 1788–1795. DOI: 10.1086/652749.<GotoISI>://WOS:000277687900003.

5. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 2004; 22: 531– 562. DOI: 10.1146/annurev.immunol.21.120601.141122. http://www.ncbi.nlm.nih.gov/pubmed/15032588.

6. Zhang W., Sharma R., Ju S., He X., Tao Y., Tsuneyama K. et al. Deficiency in regulatory T cells results in development of antimitochondrial antibodies and autoimmune cholangitis. Hepatology. 2009; 49 (2): 545–552. DOI: 10.1002/hep.22651.

7. Moreno-Fernandez M.E., Zapata W., Blackard J.T., Franchini G., Chougnet C.A. Human regulatory T cells are targets for human immunodeficiency Virus (HIV) infection, and their susceptibility differs depending on the HIV type 1 strain. J. Virol. 2009; 83 (24): 12925–12933. DOI: 10.1128/JVI.01352-09. https://www.ncbi.nlm.nih.gov/pubmed/19828616. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786841/pdf/1352-09.pdf.

8. Miyara M., Yoshioka Y., Kitoh A., Shima T., Wing K., Niwa A. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009; 30 (6): 899–911. DOI: 10.1016/j.immuni.2009.03.019. https://www.ncbi.nlm.nih.gov/pubmed/19464196.https://www.cell.com/immunity/pdf/S1074-7613(09)00202-7.pdf.

9. Venken K., Thewissen M., Hellings N., Somers V., Hensen K., Rummens J.L. et al. A CFSE based assay for measuring CD4+CD25+ regulatory T-cell mediated suppression of auto-antigen specific and polyclonal T cell responses. J. Immunol. Methods. 2007; 3 22 (1–2): 1–11. DOI: 10.1016/j.jim.2007.01.025. https://www.ncbi.nlm.nih.gov/pubmed/17368474.

10. Ndhlovu L.C., Loo C.P., Spotts G., Nixon D.F., Hecht F.M. FOXP3 expressing CD127lo CD4+ T cells inversely correlate with CD38+ CD8+ T-cell activation levels in primary HIV-1 infection. J. Leukoc. Biol. 2008; 83 (2): 254–262. DOI: 10.1189/jlb.0507281. https://www.ncbi.nlm.nih.gov/pubmed/17982112. https://jlb.onlinelibrary.wiley.com/doi/pdf/10.1189/jlb.0507281.

11. Eggena M.P., Barugahare B., Jones N., Okello M., Mutalya S., Kityo C. et al. Depletion of regulatory T cells in HIV infection is associated with immune activation. J. Immunol. 2005; 174 (7): 4407–4414. https://www.ncbi.nlm.nih.gov/pubmed/15778406. http://www.jimmunol.org/content/jimmunol/174/7/4407.full.pdf.

12. Prendergast A., Prado J.G., Kang Y.H., Chen F., Riddell L.A., Luzzi G. et al. HIV-1 infection is characterized by profound depletion of CD161+ Th17 cells and gradual decline in regulatory T cells. AIDS. 2010; 24 (4): 491–502. DOI: 10.1097/QAD.0b013e3283344895. https://www.ncbi.nlm.nih.gov/pubmed/20071976.

13. Lim A., Tan D., Price P., Kamarulzaman A., Tan H.Y., James I. et al. Proportions of circulating T cells with a regulatory cell phenotype increase with HIV-associated immune activation and remain high on antiretroviral therapy. AIDS. 2007; 21 (12): 1525–1534. DOI: 10.1097/QAD.0b013e32825eab8b. https://www.ncbi.nlm.nih.gov/pubmed/17630546.

14. Cao W., Jamieson B.D., Hultin L.E., Hultin P.M., Detels R. Regulatory T cell expansion and immune activation during untreated HIV type 1 infection are associated with disease progression. AIDS Res. Hum. Retroviruses. 2009; 25 (2): 183–191. DOI: 10.1089/aid.2008.0140. https://www.ncbi.nlm.nih.gov/pubmed/19239357. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782619/pdf/aid.2008.0140.pdf.

15. Tenorio A.R., Spritzler J., Martinson J., Gichinga C.N., Pollard R.B., Lederman M.M. et al. The effect of aging on T-regulatory cell frequency in HIV infection. Clin. Immunol. 2009; 130 (3): 298–303. DOI: 10.1016/j.clim.2008.10.001. http://www.ncbi.nlm.nih.gov/pubmed/19008157.

16. Zhang Z., Jiang Y., Zhang M., Shi W., Liu J., Han X. et al. Relationship of frequency of CD4+CD25+Foxp3+ regulatory T cells with disease progression in antiretroviral-naive HIV-1 infected Chinese. Jpn. J. Infect Dis. 2008; 61 (5): 391–392. https://www.ncbi.nlm.nih.gov/pubmed/18806350.

17. Marziali M., de Santis W., Carello R., Leti W., Esposito A., Isgro A. et al. T-cell homeostasis alteration in HIV- 1 infected subjects with low CD4 T-cell count despite undetectable virus load during HAART. AIDS. 2006; 20 (16): 2033–2041. DOI: 10.1097/01.aids.0000247588.69438.fd. http://www.ncbi.nlm.nih.gov/pubmed/17053349.

18. Weiss L., Piketty C., Assoumou L., Didier C., Caccavelli L., Donkova-Petrini V. et al. Relationship between regulatory T cells and immune activation in human immunodeficiency virus-infected patients interrupting antiretroviral therapy. PLoS One. 2010; 5 (7): e11659. DOI: 10.1371/journal.pone.0011659. https://www.ncbi.nlm.nih.gov/pubmed/20657770 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2908121/pdf/pone.0011659.pdf.

19. Chevalier M.F., Weiss L. The split personality of regulatory T cells in HIV infection. Blood. 2013; 121 (1): 29-37. DOI: 10.1182/blood-2012-07-409755. https://www.ncbi.nlm.nih.gov/pubmed/23043072 http://www.bloodjournal.org/content/bloodjournal/121/1/29.full.pdf.

20. Mason G.M., Lowe K., Melchiotti R., Ellis R., de Rinaldis E., Peakman M. et al. Phenotypic сomplexity of the human regulatory T-cell compartment revealed by mass cytometry. J. Immunol. 2015; 195 (5): 2030–2037. DOI: 10.4049/jimmunol.1500703. https://www.ncbi.nlm.nih.gov/pubmed/26223658.

21. Wing K., Onishi Y., Prieto-Martin P., Yamaguchi T., Miyara M., Fehervari Z. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008; 322 (5899): 271–275. DOI: 10.1126/science.1160062. https://www.ncbi.nlm.nih.gov/pubmed/18845758. http://science.sciencemag.org/content/322/5899/271.long.

22. Sakaguchi S., Yamaguchi T., Nomura T., Ono M. Regulatory T cells and immune tolerance. Cell. 2008; 133 (5): 775–787. DOI: 10.1016/j.cell.2008.05.009. https://www.ncbi.nlm.nih.gov/pubmed/18510923.


Review

For citations:


Chereshnev V.A., Saidakova E.V., Korolevskaya L.B., Shmagel N.G., Shmagel K.V. Regulatory T-lymphocyte subsets in patients with HIV-infection receiving highly active antiretroviral therapy. Bulletin of Siberian Medicine. 2019;18(1):247-256. (In Russ.) https://doi.org/10.20538/1682-0363-2019-1-247-256

Views: 962


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)