Preview

Bulletin of Siberian Medicine

Advanced search

Phenotype and functions of human dendritic cells derived from CD14+ monocyte subsets opposed to CD16 expression

https://doi.org/10.20538/1682-0363-2019-1-266-276

Abstract

The aim of the study was to analyze the relationship between monocyte subpopulations and phenotype/ functions of monocyte-derived dendritic cells (DCs), as well as DC sensitivity to the tolerogenic effect of dexamethasone.

Materials and methods. The study included 15 healthy donors. DCs were generated by cultivating enriched fractions of CD14+ monocytes with or without CD16+cell depletion (CD16-Mo-DCs or CD16+Mo-DCs, respectively) in the presence of interferon alpha (IFNα) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Monocyte subpopulations were obtained by immunomagnetic negative selection.

Results. CD16+Mo-DCs were characterized by higher percentage of mature (CD83+CD14-) and lower number of semi-mature (CD14+CD83+) cells, but were similar to CD16-Mo-DCs by HLA-DR and CD86 expression, involved in the presentation of antigens and activation of naive T-cells. and also to co-inhibitory/ tolerogenic molecules B7-H1 and TLR-2. CD16+Mo-DCs displayed higher allostimulatory activity, which was positively correlated with CD86 expression (rS = 0.69; p = 0.027) and negatively – with TLR-2 expression (rS = -0.72; p = 0.1). Allostimulatory activity of CD16-Mo-DCs was positively correlated with the number of mature CD14-CD83+DCs and semi-mature CD14+CD83+DCs. Addition of dexamethasone (10-6 M) into CD16-Mo-DCs and CD16+Mo-DCs cultures led to the delay of DC maturation, the decrease of CD86 and the increase of TLR-2 expression, as well as the increase of cells with co-inhibitory CD86- B7-H1+ phenotype that was positively correlated with the reduction of DC allostimulatory activity. The decrease of CD86+/TLR-2+ index in CD16+Mo-DC population was due to the reduction of CD86+DCs and in CD16-Mo-DC population – to the increase of TLR-2+cells. Dexamethasone possessed higher inhibitory effect on DC maturation in the CD16+Mo-DC cultures.

Conclusion. CD14+ monocytes, both contained and depleted by CD16+ cells, can differentiate into DCs when cultured with IFNα. The presence of CD16+ cells in whole blood monocyte pool is associated with generation of DCs showed a more mature phenotype and higher allostimulatory activity. Both CD16- and CD16+ monocyte-derived DCs are sensitive to suppressive effect of dexamethasone. However, dexamethasone tolerogenic effect involves different mechanisms in CD16-Mo-DCs and CD16+Mo-DCs.

About the Authors

E. R. Chernykh
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI)
Russian Federation

Chernykh Elena R., DM, Рrofessor, Corresponding Member of the Russian Academy of Sciences, Head of the Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



T. V. Tyrinova
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI)
Russian Federation

Tyrinova Tamara V., PhD, Researcher, Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



O. Yu. Leplina
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI)
Russian Federation

Leplina Olga Yu., DM, Leading Researcher, Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



M. A. Tikhonova
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI)
Russian Federation

Tikhonova Marina A., PhD, Superior Researcher, Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



Yu. D. Kurochkina
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI)
Russian Federation

Kurochkina Yuliya D., Postgraduate Student, Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



E. A. Oleynik
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI)
Russian Federation

Oleynik Ekaterina A., Postgraduate Student, Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



L. V. Sakhno
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI)
Russian Federation

Sakhno Ludmila V., PhD, Senior Researcher, Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



A. A. Ostanin
Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology (RIFCI)
Russian Federation

Ostanin Alexander A., DM, Professor, Main Researcher, Laboratory of Cellular Immunotherapy

14, Yadrintsevskaya Str., Novosibirsk, 630099



References

1. Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J.M., Liu Y.-J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; 116: e74–80. DOI: 10.1182/blood-2010-02-258558.

2. Feng A.-L., Zhu J.-K., Sun J.-T., Yang M.-X., Neckenig M.R., Wang X.-W., Shao Q.-Q., Song B.-F., Yang Q.-F., Kong B.-H., Qu X. CD16+ monocytes in breast cancer patients: expanded by monocyte chemoattractant protein-1 and may be useful for early diagnosis. Clin. Exp. Immunol. 2011; 164 (1): 57–65. DOI: 10.1111/j.1365-2249.2011.04321.x.

3. Chara L., Sбnchez-Atrio A., Pйrez A., Cuende E., Albarrбn F., Turriуn A., Chevarria J., del Barco A.A., Sбnchez M.A., Monserrat J., Prieto A., de la Hera A., Sanz I., Diaz D., Alvarez-Mon M. The number of circulating monocytes as biomarkers of the clinical response to methotrexate in untreated patients with rheumatoid arthritis. J. Transl. Med. 2015; 13: 2. DOI: 10.1186/s12967-014-0375.y.

4. Wong K.L., Yeap W.H., Tai J.J.Y., Ong S.M., Dang T.M., Wong S.C. The three human monocyte subsets: implications for health and disease. Immunol. Res. 2012; 53 (1–3): 41–57. DOI: 10.1007/s12026-012-8297-3.

5. Bakdash G., Sittig S.P., Dijk T. van, Figdor C.G., Vries I.J.M. de. The nature of activatory and tolerogenic dendritic cell-derived signal II. Front. Immunol. 2013; 4: 53 DOI: 10.3389/FIMMU.2013.00053.

6. Ancuta P., Liu K.-Y., Misra V., Wacleche V., Gosselin A., Zhou X., Gabuzda D. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets. BMC Genomics. 2009; 10: 403. DOI: 10.1186/1471-2164-10-403.

7. Boyette L.B., Macedo C., Hadi K., Elinoff B.D., Walters J.T., Ramaswami B., Chalasani G., Taboas J.M., Lakkis F.G., Metes D.M. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One. 2017; 12 (4): e0176460. DOI: 10.1371/journal.pone.0176460.

8. Thurner B., Rцder C., Dieckmann D., Heuer M., Kruse M., Glaser A., Keikavoussi P., Kдmpgen E., Bender A., Schuler G. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J. Immunol. Methods. 1999; 223: 1–15. DOI: 10.1016/S0022-1759(98)00208-7.

9. Papewalis C., Jacobs B., Wuttke M., Ullrich E., Baehring T., Fenk R., Willenberg H.S., Schinner S., Cohnen M., Seissler J., Zacharowski K., Scherbaum W.A., Schott M. IFN- skews monocytes into CD56+-expressing dendritic cells with potent functional activities in vitro and in vivo. J. Immunol. 2008; 180 (3): 1462–1470. DOI: 10.4049/jimmunol.180.3.1462.

10. Tyrinova T.V., Leplina O.Y., Tikhonova M.A., Mishinov S.V., Stupak V.V., Ostanin A.A., Chernykh E.R. CCL19/CCL21-dependent chemotaxis of dendritic cells in healthy individuals and patients with brain tumors. Bulletin of Experimental Biology and Medicine. 2014; 158 (12): 752–756 (in Russ.). DOI: 10.1007/s10517-015-2862-4.

11. Leplina O. Yu., Tyrinova T.V., Tikhonova M.A., Ostanin A.A., Chernykh E.R. Interferon alpha induces generation of semi-mature dendritic cells with high pro-inflammatory and cytotoxic potential. Cytokine. 2015; 71: 1–7. DOI: 10.1016/j.cyto.2014.07.258.

12. Kurochkina Y.D., Leplina O.Y., Tikhonova M.A., Tyrinova T.V., Batorov E.V., Sizikov A.E., Ostanin A.A., Chernykh E.R. Effect of dexamethasone on interferon-α-induced differentiation of monocytes to dendritic cells. Med. Immunol. 2016; 18 (4): 347–356. (in Russ.). DOI: 10.15789/1563-0625-2016-4-347-356.

13. Dopheide J.F., Zeller G.C., Kuhlmann M., Girndt M., Sester M., Sester U. Differentiation of monocyte derived dendritic cells in end stage renal disease is skewed towards accelerated maturation. Adv. Clin. Exp. Med. 2015; 24 (2): 257–266. DOI: 10.17219/acem/40463.

14. Wong K.L., Tai J.J.-Y., Wong W.-C., Han H., Sem X., Yeap W.-H., Kourilsky P., Wong S.-C. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011; 118 (5): e1631. DOI: 10.1182/blood-2010-12-326355.

15. Merino A., Buendia P., Martin-Malo A., Aljama P., Ramirez R., Carracedo J. Senescent CD14+CD16+ Monocytes exhibit proinflammatory and proatherosclerotic activity. J. Immunol. 2011; 186 (3): 1809–1815. DOI: 10.4049/jimmunol.1001866.

16. Gren S.T., Rasmussen T.B., Janciauskiene S., Hеkansson K., Gerwien J.G., Grip O. A single-cell gene-expression profile reveals inter-cellular heterogeneity within human monocyte subsets. PLoS One. 2015; 10 (12): e0144351. DOI: 10.1371/journal.pone.0144351.

17. Skinner N.A., MacIsaac C.M., Hamilton J.A., Visvanathan K. Regulation of Toll-like receptor (TLR)2 and TLR4 on CD14dimCD16+ monocytes in response to sepsis-related antigens. Clin. Exp. Immunol. 2005; 141 (2): 270–278. DOI: 10.1111/j.1365-2249.2005.02839.x.

18. Sakhno L.V., Tikhonova M.A., Tyrinova T.V., Leplina O.Y., Shevela E.Y., Nikonov S.D., Zhdanov O.A., Ostanin A.A., Chernykh E.R. Cytotoxic activity of dendritic cells as a possible mechanism of negative regulation of T lymphocytes in pulmonary tuberculosis. Clin. Dev. Immunol. 2012; 2012: 1–9. DOI: 10.1155/2012/628635.

19. Chen L., Azuma T., Yu W., Zheng X., Luo L., Chen L. B7-H1 maintains the polyclonal T cell response by protecting dendritic cells from cytotoxic T lymphocyte destruction. Proc. Natl. Acad. Sci. 2018; 115 (12): 3126– 3131. DOI: 10.1073/pnas.1722043115.

20. Lee J.-H., Park C.-S., Jang S., Kim J.-W., Kim S.-H., Song S., Kim K., Lee C.-K. Tolerogenic dendritic cells are efficiently generated using minocycline and dexamethasone. Scientific Reports. 2017; 7: 15087. DOI: 10.1038/s41598-017-15569-1.


Review

For citations:


Chernykh E.R., Tyrinova T.V., Leplina O.Yu., Tikhonova M.A., Kurochkina Yu.D., Oleynik E.A., Sakhno L.V., Ostanin A.A. Phenotype and functions of human dendritic cells derived from CD14+ monocyte subsets opposed to CD16 expression. Bulletin of Siberian Medicine. 2019;18(1):266-276. (In Russ.) https://doi.org/10.20538/1682-0363-2019-1-266-276

Views: 1308


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)