Preview

Bulletin of Siberian Medicine

Advanced search

Subpopulations of blood monocytes in patients with generalized hypoxia

https://doi.org/10.20538/1682-0363-2019-1-277-285

Abstract

The aim of the work is to establish general regularities and features of differentiation of blood monocytes into 4 subpopulations in diseases associated with circulatory and respiratory hypoxia.

Materials and methods. 18 patients with ischemic heart disease (IHD), 12 patients with ischemic cardiomyopathy (ICMP), 14 patients with chronic obstructive pulmonary disease (COPD), 15 patients with newly diagnosed infiltrative pulmonary tuberculosis (PTB) and 12 healthy donors were examined. In whole blood, we determined the relative number of different subpopulations of monocytes by flow cytometry. The results were analyzed by statistical methods.

Results. It is shown that an increase in the number of classical (80.56 [77.60; 83.55]%) and the deficit of intermediate (10.38 [9.36; 11.26]%), non-classical (6.03 [5.24; 6.77]%) and transitional (2.14 [1.41; 3.92] %) monocytes in the blood is determined in patients with COPD when compared with the group of healthy donors (p < 0.05). In groups of patients with PTB and IHD, an increase in the number of intermediate monocytes (26.24 respectively [22.38; 42.88] % and 25.27 [15.78; 31.39]%) and the lack of transitional cells (1.77 [1.36; 3.74]% and 2.68 [2.63; 4.0]%) at the normal content of classical and non-classical forms of monocytes (p < 0.05) is detected. In patients with ICMP, a decrease in the number of non-classical monocytes (up to 5.05 [4.08; 6.58]%) is combined with the normal cell content of other subpopulations (p < 0.05). The interrelation between the number of classical and intermediate monocytes in patients with COPD (r = –0.63; p < 0.05), PTB (r = –0.72; p < 0.01), IHD (r = –0.59; p < 0.05), ICMP (r = –0.58; p < 0.05) was established.

Conclusion. In COPD associated with generalized hypoxia, an increase in the number of classical monocytes is combined with a deficiency of their other subpopulations in the blood. In PTB and IHD, antigenic stimulation of the immune system mediates accelerated differentiation of monocytes from classical to intermediate forms with a decrease in the number of transitional cells regardless of the etiology of the disease (infectious or non-infectious) and the type of hypoxia (respiratory or circulatory).

About the Authors

S. P. Chumakova
Siberian State Medical University (SSMU)
Russian Federation

Chumakova Svetlana P., DM, Professor, Pathophysiology Division

2, Moscow Trakt, Tomsk, 634055



M. V. Vins
Siberian State Medical University (SSMU)
Russian Federation

Vins Maria V., Post-graduate Student, Assistant, Pathophysiology Division

2, Moscow Trakt, Tomsk, 634055



O. I. Urazova
Siberian State Medical University (SSMU); Tomsk State University of Control Systems and Radioelectronics (TUSUR)
Russian Federation

Urazova Olga I., DM, Professor, Corresponding Member of RAS, Head of the Pathophysiology Division, SSMU; Professor, Department of Complex Information Security of Computer Systems, TUSUR

2, Moscow Trakt, Tomsk, 634055, 40, Lenin Av., Tomsk, 634050



D. A. Azarova
Siberian State Medical University (SSMU)
Russian Federation

Azarova Daria A., Post-graduate Student

2, Moscow Trakt, Tomsk, 634055



V. M. Shipulin
Siberian State Medical University (SSMU); Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences (RAS)
Russian Federation

Shipulin Vladimir M., DM, Professor, Honored Scientist of Russia, Scientific Head of the Cardiovascular Surgery Department, Cardiology Research Institute, Tomsk NRMC; Professor, Division of Hospital Surgery with a Course of Cardiovascular Surgery, SSMU

Cardiology Research Institute

2, Moscow Trakt, Tomsk, 634055, 111A, Kievskaya Str., Tomsk, 634012



A. S. Pryakhin
Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences (RAS)
Russian Federation

Pryakhin Andrey S., Post-graduate Student, Cardiovascular Surgery Department

Cardiology Research Institute

111A, Kievskaya Str., Tomsk, 634012



E. B. Bukreeva
Siberian State Medical University (SSMU)
Russian Federation

Bukreeva Ecatherina B., DM, Professor, Division of Internal Diseases Propaedeutic with the Therapy Course of Pediatric Faculty

2, Moscow Trakt, Tomsk, 634055



A. A. Bulanova
Siberian State Medical University (SSMU)
Russian Federation

Bulanova Anna A., PhD, Assistant, Division of Internal Diseases Propaedeutic with the Therapy Course of Pediatric Faculty

2, Moscow Trakt, Tomsk, 634055



A. P. Koshel
Siberian State Medical University (SSMU); City Clinical Hospital № 3 named after B.I. Alperovich
Russian Federation

Koshel Andrey P., DM, Professor, Head of Surgery Division with Course of Mobilization Preparation and Disaster Medicine, SSMU; Chief Doctor of the Clinical Hospital № 3 named after B.I. Alperovich

2, Moscow Trakt, Tomsk, 634055, 3, Nakhimova Str., Tomsk, 634050



E. G. Churina
Siberian State Medical University (SSMU); National Research Tomsk State University (NR TSU)
Russian Federation

Churina Elena G., DM, Professor, Pathophysiology Division, SSMU; Professor, Organic Chemistry Department, NR TSU

2, Moscow Trakt, Tomsk, 634055, 36, Lenin Av., Tomsk, 634050



A. V. Sitnikova
Siberian State Medical University (SSMU)
Russian Federation

Sitnikova Anzhelika V., Post-graduate Student, Pathophysiology Division

2, Moscow Trakt, Tomsk, 634055



N. P. Garganeeva
Siberian State Medical University (SSMU)
Russian Federation

Garganeeva Natalia P., DM, Professor, Division of General Medical Practice and Outpatient Therapy

2, Moscow Trakt, Tomsk, 634055



V. V. Novitskii
Siberian State Medical University (SSMU); Tomsk State University of Control Systems and Radioelectronics (TUSUR)
Russian Federation

Novitskii Vyacheslav V., DM, Professor, Academician of RAS, Honored Scientist of Russia, Professor of the Pathophysiology Division, SSMU; Professor, Department of Complex Information Security of Computer Systems, TUSUR

2, Moscow Trakt, Tomsk, 634055, 40, Lenin Av., Tomsk, 634050



References

1. Potapnev M.P. Immune mechanisms of sterile inflammation. Immunology, 2015; 5: 312–318 (in Russ.).

2. Jarilin A.A. Immunologу. M.: Geotar-Media Publ., 2010: 752 (in Russ.).

3. Hollander A.P., Corke K.P., Freemont A.J., Lewis C.E. Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum. 2001; 44: 1540–1544. DOI: 10.1002/1529-0131(200107)44:7<1540:AID-ART277>3.0.CO;2-7.

4. Belton M., Brilha S., Manavaki R., Mauri F., Nijran K., Hong Y.T., Patel N.H., Dembek M., Tezera L., Green J., Moores R., Aigbirhio F., Al-Nahhas Adil, Fryer T.D., Elkington P.T., Friedland J.S. Hypoxia and tissue destruction in pulmonary TB. Thorax. 2016; 71 (12): 1145–1153. DOI: 10.1136/thoraxjnl-2015-207402.

5. Hulsmans M., Sam F., Nahrendorf M. Monocyte and Macrophage Contributions to Cardiac Remodeling. J. Mol. Cell Cardiol. 2016; 93: 149–155. DOI: 10.1016/j.yjmcc.2015.11.015.

6. Semba H., Takeda N., Isagawa T., Sugiura Y., Honda K., Wake M. HIF-1alpha-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat. Commun. 2016; 7: 11635. DOI: 10.1038/ncomms11635.

7. Matveeva V.G., Golovkin A.S., Grigoriev E.V. Subpopulation of monocytes is a prognostic marker of severe complications of a systemic inflammatory response after coronary artery bypass surgery. Complex Рroblems of Сardiovascular Diseases. 2014; 4: 5–12 (in Russ.).

8. Barisionea C., Garibaldia S., Ghigliottia G., Fabbia P., Altieria P., Casalea M., Spallarossaa P., Berteroa G., Balbia M., Corsigliab L., Brunellia C. CD14CD16 monocyte subset levels in heart failure patients. Dis. Marker. 2010: 115–124. DOI: 10.3233/DMA-2010-0691.

9. Loems Ziegler-Heitbrock, Thomas P.J. Hofer. Toward a Refined Definition of Monocyte Subsets. Front. Immunol. 2013; 4: 23. DOI: 10.3389/fimmu.2013.00023.

10. Anker S.D., Egerer K.R., Volk H.D., Kox W.J., Poole-Wilson P.A., Coats A.J. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am. J. Cardiol. 1997; 79: 1426–1430.

11. Khanin A.L., Kravets S.L. Chronic obstructive pulmonary disease and tuberculosis: an actual problem in real practice (literature review). Bulletin of Мodern Сlinical Мedic. 2017; 6: 60–70. (in Russ.). DOI: 10.20969/VSKM.2017.10(6).60-70.

12. Geissmann F., Manz M.G., Jung S., Sieweke M.H., Merad M., Ley K. Development of monocytes, macrophages and dendritic cells. Science (New York, NY). 2010; 327 (5966): 656–661. DOI: 10.1126/science.1178331.

13. Malykhin F.T., Kostorna I.V. Morphological changes in the respiratory system in chronic obstructive pulmonary disease. Archive of Рathology. 2016; 78 (1): 42–50. (in Russ.). DOI: 10.17116/patol201678142-50.

14. Wacleche V.S., Tremblay C.L., Routy J.-P., Ancuta P. The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses. 2018; 10 (2): 65. DOI: 10.3390/v10020065.

15. Novitskii V.V., Voronkova O.V., Urazova O.I., Strelis A.K., Tkachenko S.B., Serebryakova V.A., Zemlyanaya N.A., Pirogova N.P., Filinyuk O.V., Shilko T.A. To the question of the pathology of immunity in pulmonary tuberculosis. Pathological Рhysiology and Еxperimental Тherapy. 2008; 1: 15–18 (in Russ.).

16. Rojas J., Salazar J., Martнnez M.S., Palmar J., Bautista J., Chávez-Castillo M., Gуmez A., Bermúdez V. Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis. Scientifica. 2015; 2015: 851252. DOI: 10.1155/2015/851252.

17. Esimova I.E., Urazova O.I., Novitsky V.V., Hasanova R.R., Koshkina A.A., Churina E.G. Causes of dysregulation of the immune response in pulmonary tuberculosis: the effect of M. tuberculosis on the course of the immune response. Bulletin of Siberian Medicine. 2012; 3: 79–86 (in Russ.).

18. Bjornheden T., Levin M., Evaldsson M., Wiklund O. Evidence of hypoxic areas within the arterial wall in vivo. Arterioscler. Thromb. Vasc. Biol. 1999; 19: 870–876.

19. Chereshnev V.A., Chereshneva M.V. Immunological mechanisms of local inflammation. Med. Immunol. 2011; 6 (13): 557–568 (in Russ.).

20. [Chumakova S.P., Urazova O.I., Shipulin V.M., Novitsky V.V., Khardikova S.A. Cytokines as inducers of postperfusion systemic inflammatory reaction in cardiosurgical patients with different duration of coronary pathology. Bulletin of Siberian Medicine. 2017; 16 (4): 260–268. (in Russ.). DOI: 10.20538/1682-0363-2017-4-260-268.

21. Barnes P.J. Chronic obstructive pulmonary disease • 12: New treatments for COPD. Thorax. 2003; 58: 803–808. DOI: 10.1136/thorax.58.9.803.

22. Esper R.J. Hypertension arterial mechanics and other issues. Revista Argentina de Cardiologia. 2011; 79 (4): 13.

23. Matveeva V.G., Golovkin A.S., Kudryavtsev I.V., Grigoriev E.V., Chernova M.N. Dynamics of CD14+CD16+ subpopulations of monocytes in uncomplicated systemic inflammatory response in the perioperative period of coronary shunting. Medical Immunology. 2012; 14 (4-5): 391–398 (in Russ.).


Review

For citations:


Chumakova S.P., Vins M.V., Urazova O.I., Azarova D.A., Shipulin V.M., Pryakhin A.S., Bukreeva E.B., Bulanova A.A., Koshel A.P., Churina E.G., Sitnikova A.V., Garganeeva N.P., Novitskii V.V. Subpopulations of blood monocytes in patients with generalized hypoxia. Bulletin of Siberian Medicine. 2019;18(1):277-285. (In Russ.) https://doi.org/10.20538/1682-0363-2019-1-277-285

Views: 1572


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)