Preview

Bulletin of Siberian Medicine

Advanced search

About the use of omega-electroencephalography to estmate functional and metabolic state of nervous tissue of the brain during hyperventilation

https://doi.org/10.20538/1682-0363-2019-2-127-145

Abstract

Objectives. The aim of this study was to investigate diagnostic capabilities of a new electrophysiological method  of omega-electroencephalography in the  estimation  of change  in functional  and metabolic  state  of the cells of nervous tissue during ischemic adaptation.

Materials and methods.  Brain ischemia was modeled  based on a hyperventilation test  (HVT). Recording  and  analysis  were  made  on  concomitant changes  in direct  current potential level (DCPL) and EEG in 38 derivations  for the same test person  in a fourfold-replicated HVT.

Results. Brain ischemia that  occurs  during volitional  hyperventilation was initially followed by DCPL negativation   (negative  shift)  (0.5–1  mV) and  increase  in amplitude  of all EEG  waves. Cessation  of HVT and return to  initial  DCPL were followed by positivation  (positive  shift) of DCPL (about  1 mV), combined  also with  high-amplitude EEG waves. Adaptation to  hypoxia and  ischemia,  modeled  using replication-based HVT,  and  improvement  of brain  resistance  to these  unfavorable  factors  manifested  themselves first in a short-term  electropositive deviation of DCPL at the start  of the test followed by DCPL positivation  reduction and then in complete substitution of electronegative response  to  positive  shift in DCPL (about  0.5 mV) during  the test.

Conclusion. The analysis of concomitant changes in DCPL and EEG during and after hyperventilation and literature data  analysis suggests that  HVT  was initially  responded  to  by depolarization in neocortical nerve  cells, combined  with  intensification  of  neuronal  activity. Activation  of compensatory mechanisms,  resulting  in improvement  of nerve  cell resistance  to ischemic conditions,  is associated  with  ischemic depolarization followed by hyperpolarization, and  enhancing  adaptive  capabilities  of brain  cells manifest  themselves  in substitution of cell membrane  depolarization to hyperpolarization in response to unfavorable  factor,  also combined with intense neuronal  activity.

About the Author

S. E. Murik
Irkutsk State University
Russian Federation

Murik Sergey E. - PhD,  Аssociate  Рrofessor,  Physiology and Psychophysiology  Department.

1, K. Marx Str., Irkutsk, 664003.



References

1. Murik S.E. Omegaelectroencephalography (Direct current EEG) as a new way of estimation of the functional and metabolic state of the neural tissue]. Bulletin of Eastern-Siberian Scientific Center SB RAMS. 2004; 3 (1): 189–194 (in Russ.).

2. Murik S.E., Shapkin A.G. Simultaneous recording of the EEG and direct current (DC) potential makes it possible to assess the functional and metabolic state of the nervous tissue. Int. J. Neuroscience. 2004; 114 (8): 977–997. DOI:10.1080/00207450490450154.

3. Murik S.E. Omegaelectroencephalography: formation history and diagnostic capabilities of the new method in electrophysiology. The Bulletin of Irkutsk State University. Series Biology, Ecology. 2018; 26: 69–85 (in Russ.). DOI: 10.26516/2073-3372.2018.26.69.

4. Murik S.E., Sufianov A.A., Sufianova G.Z., Shapkin A.G. Experimental data on electrophysiological indicators of different severity brain ischemia. Bulletin of Eastern-Siberian Scientific Center SB RAMS. 2003; 1: 148–154 (in Russ.).

5. Murik S.E. General neural mechanisms of motivations and emotions. Irkutsk: Publishing House Irkutsk State University Publ., 2006: 358 (in Russ.).

6. Murik S.E. The use of DCEEG to estimate functional and metabolic state of nervous tissue of the brain at hyper- and hypoventilation. World Journal of Neuroscience. 2012; 2: 172–182. DOI: 10.4236/wjns.2012.23027.

7. Murik S.E. A method of determining the functional and metabolic state of the nervous tissue. Patent for invention, No. 2319441, 20.03.2008 (in Russ.).

8. Murik S.E., Shapkin A.G. A method of determining the functional and metabolic state of the nervous tissue. Patent for invention, No. 2245673, 10.02.2005 (in Russ.).

9. Gantsgorn E.V., Khloponin D.P., Maklyakov Yu.S. Indicators of quantitative pharmaco-EEG in acute cerebral ischemia and their dynamics in terms of the use of nootropics. Medical Herald of the South of Russia. 2014; 1: 14–23 (in Russ.).

10. Zwiener U., Löbel S., Rother M., Funke M. Quantitative topographical analysis of EEG during nonstandardized and standardized hyperventilation. J. Clin. Neurophysiol. 1998; 15 (6): 521–528.

11. Rockstroh B. Hyperventilation-induced EEG changes in humans and their modulation by an anticonvulsant drug. Epilepsy Res. 1990; 7 (2): 146–154.

12. Kraaier V., Van Huffelen A.C., Wieneke G.H. Changes in quantitative EEG and blood flow velocity due to standardized hyperventilation; a model of transient ischaemia in young human subjects, Electroenceph. Clin. Neurophysiol. 1988; 70 (5): 377–387. DOI: /10.1016/0013-4694(88)90015-6.

13. Gnezditsky V.V. Inverse EEG problem and clinical electroencephalography. Moscow: MEDpress-inform Publ., 2004: 624 (in Russ.).

14. Burghaus L., Hilker R., Dohmen C., Bosche B., Winhuisen L., Galldiks N., Szelies B., Heiss W.D. Early electroencephalography in acute ischemic stroke: prediction of a malignant course? Clin. Neurol. Neurosurg. 2007; 109 (1): 4549. DOI: 10.1016/j.clineuro.2006.06.003.

15. Postnov V.G., Karaskov A.M., Lomivorotov V.V. Possibilities of using electroencephalography in cardiosurgery. Circulation Pathology and Cardiac Surgery. 2009; 1: 35–42 (in Russ.).

16. Latynina M.V. The role of hyperventilation tests during electroencephalographic examination: the physiological aspect. Thesis of the Candidate of Biological Sciences. Vladivostok, 2005: 144 (in Russ.).

17. Immink R.V., Pott F.C., Secher N.H., van Lieshout J.J. Hyperventilation, cerebral perfusion, and syncope. J. Appl. Physiol. 2014; Apr. 116 (7): 844–851. DOI: 10.1152/japplphysiol.00637.2013.

18. Gnezditsky V.V., Koshurnnikova E.E., Korepina O.S., Skomorokhov A.A. Analysis of EEG responses to hyperventilation (trends and dipole localization): problems of interpretation. Functional Diagnostics. 2010; 1: 13–25 (in Russ.).

19. Tomita-Gotoh S., Hayashida Y. Scalp-recorded direct current potential shifts induced by hypocapnia and hypercapnia in humans. Electroencephalography and Сlinical Neurophysiology. 1996; 99 (1): 90–97. DOI: 10.1016/0921-884X(96)95170-X.

20. Voipio J., Tallgren P., Heinonen E., Vanhatalo S., Kaila K. Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator. J. Neurophysiol. 2003; 89 (4): 2208–2214. DOI: 10.1152/jn.00915.2002.

21. Peterson E.C., Wang Z., Britz G. Regulation of cerebral blood flow. Intern. J. Vascular Medicine. 2011; Article ID 823525: 8. DOI: 10.1155/2011/823525.

22. Vein A.M., Moldavanu I.V. Neurogenic hyperventilation. Kishinev: Shtitsa Publ., 1988: 181 (in Russ.).

23. Koroleva V.I., Vinogradova L.V. Ischemic and hypoxic depolarization in the rat neocortex. I.P. Pavlov Journal of Higher Nervous Activity. 2000; 50 (4): 612–623 (in Russ.).

24. Hartings J.A., Li C., Hinzman J.M. et al. Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations. Journal of Cerebral Blood Flow & Metabolism. 2017; 37 (5): 1857–1870. DOI: 10.1177/0271678X16653135.

25. Ohta K., Graf R., Rosner G. et al. Calcium ion transients in peri infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats. Stroke. 2001; 32 (2): 535–543.

26. Yanvareva I.N. and Kuzmina T.R. On the mechanisms of violation of the functional state of the central nervous system in case of oxygen insufficiency of the brain. Physiological mechanisms of the main nervous processes. Physiological mechanisms of basic neural processes. Proceedings of the Leningrad naturalists’ society. 1985; 75 (5): 71–77 (in Russ.).

27. Vlasova I.G., Agadzhanyan N.A. Individual resistance to hypoxia of the body and the nerve cell. Bulletin of Experimental Biology and Medicine. 1994; 118 (11): 454–457 (in Russ.).

28. Fontes A., Fernandes H.P., de Thomaz A.A. et al. Measuring electrical and mechanical properties of red blood cells with double optical tweezers. J. Biomed. Opt. 2008; 13 (1): 014001. DOI: 10.1117/1.2870108.

29. Nechipurenko N.I., Pashkovskaya I.D. Basic pathophysiological mechanisms of cerebral ischemia. Medical News. 2008; 1: 7–13 (in Russ.).

30. Pekun T.G., Wasem T.V., Fedorovich S.V. Depolarization of the plasma membrane by synaptas of a rat’s brain during extracellular and intracellular acidification. Biophysics. 2014; 59 (1): 100–104 (in Russ.).

31. Goldring S., O’Leary J.-L. Summation of certain enduring sequelae of cortical activation in the rabbit. Electroencephal. аnd Clin. Neurophysiol. 1951; 3 (3): 329–340.

32. Sorokhtin G.N. Reactions of excitable systems to excitation deficit. Moscow: Medicine Publ., 1968: 352 (in Russ.).

33. Caspers H., Speckmann E.J., Lehmenkьhler A. Electrogenesis of cortical DC potentials. Prog. Brain Res. 1980; 54: 3–15. DOI: 10.1016/S0079-6123(08)61603-9.

34. Rogers H., Birch P.J., Hayes A.G. Effects of hypoxia and hypoglycaemia on DC potentials recorded from the gerbil hippocampus in vitro. Naunyn. Schmiedebergs. Arch. Pharmacol. 1990; 342 (5): 547–553.

35. Leblond J., Krnjevic K. Hypoxic changes in hippocampal neurons. J. Neurophysiol. 1989; 62 (1): 1–14.

36. Vvedensky N.E. Excitation, inhibition and narcosis. St. Petersburg, 1901: 110 (in Russ.).

37. Movchan N.P. L.L. Vasiliev’s research is a new stage in the development of N.E. Vvedensky’s theory of parabiosis. Physiological Мechanisms of Вasic Neural Рrocesses. Proceedings of the Leningrad Naturalists Society. 1985; 75 (5): 515 (in Russ.).

38. Murik S.E. On the functional state of brain neurons. Bulletin of Eastern-Siberian Scientific Center SB RAMS. 2003; 7: 51–53 (in Russ.).

39. Murik S.E. General scheme of adaptation of nerve cells: a new insight. Interdisciplinary Scientific Conference «Adaptive Strategies of Living Systems». AR Crimea, Ukraine, June 11–16, 2012: 82 (in Russ.).

40. Vitik A.A., Khlestkina MS, Ishchenko T.V. Changes in the bioelectrical activity of the brain in the simulation of focal transient cerebral ischemia in rats. European Research. The articles of the IV International Scientific and Practical Conference, 2016: 38-46 (in Russ.).


Review

For citations:


Murik S.E. About the use of omega-electroencephalography to estmate functional and metabolic state of nervous tissue of the brain during hyperventilation. Bulletin of Siberian Medicine. 2019;18(2):127-145. https://doi.org/10.20538/1682-0363-2019-2-127-145

Views: 926


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)