Preview

Bulletin of Siberian Medicine

Advanced search

Possibilities of using proteomic analysis in infectiology

https://doi.org/10.20538/1682-0363-2019-2-248-261

Abstract

Modern methods of diagnosis and treatment of infectious diseases should be based on reliable data obtained through various methods of laboratory research. The main characteristics of the methods used are high sensitivity (the ability to analyze a small amount of sample, 10–6–10–4 g/ml), selectivity, reproducibility and others. Proteomic methods of research satisfy all the principles of evidence-based medicine. The advantages of using these methods to identify biomarkers (identifying proteins with altered expression levels), timely diagnosis and treatment of infectious diseases, described in the article, are obvious. Their introduction into practice is an element of personalized medicine.

About the Authors

N. S. Strashnikova
Krasnoyarsk Interdistrict Children’s Hospital No. 1.
Russian Federation
Strashnikova Natalya S., Infectious Disease Doctor

49, Telmana Str., 660111, Krasnoyarsk


G. P. Martynova
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Vojno-Yasenetsky
Russian Federation
Martynova Galina P., DM, Professor, Head of the Children Infectious Diseases Department with Postgraduate
Education

1, Partizana Zheleznyaka Str., Krasnoyarsk, 660022


A. B. Salmina
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Vojno-Yasenetsky
Russian Federation
Salmina Alla B., DM, Professor, Vice-Rector for Innovative Development and International Activities, Head
of the Department of Biochemical Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry, Head of the Research Institute of Molecular Medicine and Pathobiochemistry

1, Partizana Zheleznyaka Str., Krasnoyarsk, 660022


R. Yа. Olovyannikova
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Vojno-Yasenetsky
Russian Federation
Olovyannikova Raisa Y., PhD, Assistant Professor, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry

1, Partizana Zheleznyaka Str., Krasnoyarsk, 660022


V. A. Kutyakov
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Vojno-Yasenetsky
Russian Federation
Kutyakov Viktor A., PhD, Senior Lecturer, Department of Biological Chemistry with a Course in Medical, Pharmaceutical and Toxicological Chemistry

1, Partizana Zheleznyaka Str., Krasnoyarsk, 660022


A. Tohidpur
Krasnoyarsk State Medical University (KSMU) named after Professor V.F. Vojno-Yasenetsky
Russian Federation
Tohidpur Abolhasem, Senior Researcher, Research Institute of Molecular Medicine and Pathobiochemistry

1, Partizana Zheleznyaka Str., Krasnoyarsk, 660022


References

1. Ivanisenko V.A., Afonnikov D.A., Nikolaev S.V., Pintus S.S., Krestyanova M.A., Pal’yanov A.Yu., Titov I.I. Actual problems of computer proteomics. Vavilov Journal of Genetics and Breeding. 2005; 9 (2) 162–178 (in Russ.)].

2. Demidov E.A., Peltek S.E. Proteomics. Vavilov Journal of Genetics and Breeding. 2014; 18 (1): 166–174 (in Russ.)].

3. Miroshnichenko I.I., Ptitsina S.N. Biomarkers in modern medical and biological practice. Biomedical Chemistry. 2009; 55 (4):425–440 (in Russ.)].

4. Kopylov A.T., Zgoda V.G. Quantitative methods in proteomics. Biomedical Chemistry. 2007; 53 (6):613–643 (in Russ.)].

5. Beltran P.M J. et al. Proteomics and integrative omics approaches for understanding host-pathogen interactions and infectious diseases. Molecular Systens Biology. 2017; 13 (3): 922. DOI: 10.15252/msb.20167062.

6. Krasnov N.V., Lyutvinsky I.I., Podolskaya E.P. Mass spectrometry with soft ionization methods in protein analysis. Scientific Instrumentation. 2010. 20 (4):5–20 (in Russ.)].

7. Pisarev D.I., Novikov O.O., Vasiliev G.V., Selyutin O.A. Experience in the use of the MALDI/TOF/MS method in pharmaceutical analysis. Scientific Bulletins of the Belgorod State University. Series: Medicine. Pharmacy. 2012; 18 (10-2): 76–85 (in Russ.)].

8. Medvedev Yu.V., Ramenskaya G.V., Shokhin I.E., Yarushok T.A. HPLC and UPLC as methods for the determination of drugs in the blood (review). Chemical-pharmaceutical Journal. 2013; 47 (4): 45–51 (in Russ.)].

9. Ivanov A.S., Zgoda V.G., Archakov A.I. Technologies of protein interactomics. Bioorganic Chemistry. 2011. 37 (1): 8–21 (in Russ.)].

10. Govorun V.M., Ivanov V.T. Proteomics and peptidomics in fundamental and applied medical research. Bioorganic Chemistry. 2011; 37 (2): 199–215 (in Russ.)].

11. Alekseeva L.A., Skripchenko N.V., Bessonova T.V. Diagnostic value of acute phase proteins in cerebrospinal fluid of children with neuroinfectious diseases. Journal of Infectology. 2010; 2 (2): 28–34 (in Russ.)].

12. Molotilova T.N. Comparative evaluation of biochemical characteristics of cerebrospinal fluid and blood in patients with meningitis of various etiologies. Extended abstract of Cand. Med. Sci. dissertation, Moscow, 2012: 121 (in Russ.)].

13. Yashin Ya.I., Yashin A.Ya. Determination of biomarkers of diseases by chromatographic methods. Medical Alphabet. 2008; 4 (17): 32–34 (in Russ.)].

14. Osipov G.A., Zybina N.N., Rodionov G.G. Experience of using mass spectrometry of microbial markers in laboratory diagnostics. Medical Alphabet. 2013; 1 (3): 64–67 (in Russ.)].

15. Kovalyov L.I., Kovalyova M.A., Burakova M.V. et al. Studies of the pathogenesis of slow neuroinfections using proteomic techniques. Neurochemical Journal. 2007; 1 (4): 318–325.

16. Smirnova N.I., Agafonov D.A., Shchelkanova E.Yu., Zadnova S.P., Cherkasov A.V., Kutyrev V.V. Genovariants of the causative agent of cholera El Tor: acquisition, molecular genetic and proteomic analysis. Molecular Genetics, Microbiology and Virology. 2014; 1: 21–31 (in Russ.)].

17. Strukova E.G., Efremov A.A., Gontova A.A., Osipov G.A., Sarmatova N.I. Determination of the microecological status and diagnosis of human infections using the chromatography-mass spectrometry method. Journal of the Siberian Federal University. Series:Chemistry. 2009; 2 (4): 351–358 (in Russ.)].

18. Sahu A., Kumar S., Sreenivasamurthy S.K. et al. Host response profile of human brain proteome in toxoplasma encephalitis co-infected with HIV. Clinical Proteomics. 2014; 11 (1): 39. DOI: 10.1186/1559-0275-11-39.

19. Vu K., Eigenheer R.A., Phinney B.S., Gelli A. Cryptococcus neoformans promotes its transmigration into the central nervous system by inducing molecular and cellular changes in brain endothelial cells. Infection and Immunity. 2013; 81 (9): 3139–3147. DOI: 10.1128/IAI.00554-13.

20. Kroeker A.L., Ezzati P., Halayko A.J., Coombs K.M. Response of primary human airway epithelial cells to influenza infection: a quantitative proteomic study. Journal of Proteome Research. 2012; 11 (8): 4132–4146. DOI:10.1021/pr300239r.

21. Chebotar I.V., Ponomarenko O.A., Lazareva A.V., Karaseva O.V., Gorelik A.L., Tepaev R.F. Use of MALDI-TOF-technology for the identification of causative agents of septic states in pediatric practice. Modern Technologies in Medicine. 2015; 7 (2): 68–74 (in Russ.)].

22. Sengupta N., Ghosh S., Vasaikar S.V., Gomes J., Basu A. Modulation of neuronal proteome profile in response to Japanese Encephalitis virus infection. PLoS One. 2014; 9 (3): e90211. DOI: 10.1371/journal.pone.0090211.

23. Kononikhin A.S., Fedorchenko K.Yu., Riabokon A.M.,Starodubtseva N.L., Popov I.A., Zavyalova M.G., Anaev E.Kh., Chuchalin A.G., Varfolomeev S.D., Nikolaev E.N. Proteomic analysis of the condensate of the exhaled air for the purpose of diagnostics of pathologies of the respiratory system. Biomedical Chemistry. 2015. 61 (6): 777–780 (in Russ.)].

24. Bukin Y.C., Dzhioev Y.P., Kozlov I.V., Ruzhek D., Zlobin V.I. Comparative analysis of physico-chemical properties of the amino acid residues included in various embodiments of the envelope protein E TBE virus. Bulletin ESSC SB RAMS. 2014; 6(100): 84–88 (in Russ.)].

25. Fraisier C., Camoin L., Lim S. et al. Altered protein networks and cellular pathways in severe west nile disease in mice. PLoS One. 2013; 8 (7): e68318. DOI: 10.1371/journal.pone.0068318..

26. Pérez-Llarena F.J., Bou G. Proteomics as a tool for studying bacterial virulence and antimicrobial resistance.Frontiers in Microbiology. 2016; 7: 410. DOI: 10.3389/fmicb.2016.00410.

27. Vranakis I., Goniotakis I., Psaroulaki A., Sandalakis V., Tselentis Y., Gevaert K., Tsiotis G. Proteome studies of bacterial antibiotic resistance mechanisms. Journal of Proteomics. 2014; (97): 88–99. DOI: 10.1016/j.jprot.2013.10.027.

28. Chen B., Zhang D., Wang X. et al. Proteomics progresses in microbial physiology and clinical antimicrobial therapy. European Journal of Clinical Microbiology & Infectious Diseases. 2016; 36 (3): 403–413. DOI: 10.1007/s10096-016-2816-4.

29. Rumbesht V.V., Matsionis A.E., Dyuzhikov A.A., Sarvilina I.V. Immunoproteomics of the infective endocarditis of native heart valves. Medical Immunology. 2008; 10 (1): 27–34 (in Russ.)].

30. Douam F., Ploss A. Proteomic approaches to analyzing hepatitis C virus biology. Proteomics. 2015; 15 (12): 2051–2065. DOI: 10.1002/pmic.201500009.

31. Venugopal A.K., Ghantasala S.S.K., Selvan L.D.N. et al. Quantitative proteomics for identifying biomarkers for rabies. Clinical Proteomics. 2013; 10 (1): 3. DOI:10.1186/1559-0275-10-3.

32. Osipov G.A., Rodionov G.G. Application of the mass spectrometry method for microbial markers in clinical practice. Polyclinic. 2013; (1–3): 68–73 (in Russ.)].

33. A method for diagnosing axonal-demyelinating polyneuropathies: Pat. 2441240 Rus. Federation: IPC G 01 N 33/49, G 01 N 27/62 / Yushchuk N.D. et al.; applicant and patent holder is Moscow, State Educational Establishment of Higher Professional Education «Moscow State University of Medicine and Dentistry» of the Ministry of Health and Social Development of the Russian Federation – No. 2010140643/15; claimed. 10/05/2010; publ. 27.01.2012 Bul. №. 3 (in Russ.)].

34. A method for diagnosing syphilis using the method of direct proteomic profiling of blood serum: pat. 2381505 Rus. Federation: IPC G 01 N 33/48 / Kubanova A.A. et al.; applicant and patent holder is Federal State Institution «State Scientific Center of Dermatovenereology of the Federal Agency for High-Tech Medical Care» – No. 2008138741/15; claimed. 30.09.2008; publ. 10.02.2010 Bul. № 4 (in Russ.)].

35. Pendyala G., Trauger S.A., Kalisiak E., Ellis R.J., Siuzdak G., Fox H.S. Cerebrospinal fluid proteomics reveals potential pathogenic changes in the brains of SIV-infected monkeys. Journal of Proteome Research. 2009; 8 (5): 2253–2260. DOI: 10.1021/pr800854t.

36. Han M.-J., Lee S.Y. The Escherichia coli proteome: past, present, and future prospects. Microbiology and Molecular Biology Reviews. 2006; 70 (2): 362–439. DOI: 10.1128/MMBR.00036-05.


Review

For citations:


Strashnikova N.S., Martynova G.P., Salmina A.B., Olovyannikova R.Y., Kutyakov V.A., Tohidpur A. Possibilities of using proteomic analysis in infectiology. Bulletin of Siberian Medicine. 2019;18(2):248-261. https://doi.org/10.20538/1682-0363-2019-2-248-261

Views: 813


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)