Preview

Bulletin of Siberian Medicine

Advanced search

PALMITIC AND OLEIC ACIDS AND THEIR ROLE IN PATHOGENESIS OF ATHEROSCLEROSIS

https://doi.org/10.20538/1682-0363-2014-5-149-159

Abstract

On the basis of phylogenetic theory of general pathology, the cause of a noninfectious disease whose occurrence in a population is more than 5–7% is an impaired biological function or reaction to the environment. From the general biology viewpoint, high mortality rate related to cardio-vascular diseases and atherosclerosis (intercellular deficiency of polyenic fatty acids (PFA)) is just extinction of the Homo sapiens population upon adaptation to new environmental factors. The biological function of throphology (feeding) and biological reaction of exotrophy (external feeding) are impaired in several aspects, the major of which is nonphysiologically high dietary content of saturated fatty acids, primarily, of palmitic fatty acid (FA). The lipoprotein system formed at early stages of phylogenesis cannot transport and provide physiological deposition of great amounts of palmitic FA, which leads to the development of an adaption (compensatory) and accumulation disease. This results in hypermipidemia, impaired bioavailability of PFA to cells, compesatory production of humoral mediators from ω-9 eicosatrienoic mead FA, disorders in physiological parameters of cell plasma membrane and integral proteins, nonphysiological conformation of apoВ-100 in lipoproteins, formation of ligandless lipoproteins (biological litter) and impairments in the biological function of endoecology, utilization of ligandless lipoproteins in arterial intima by phylogenetically early macrophages that do not hydrolyze polyenic cholesterol esters, increase in the intensity of the biological reaction of inflammation, and destructive and inflammatory lesions in arterial intima of an atheromatosis or atherothrombosis type. Atheromatous masses are catabolites of PFA which were not internalized by phylogenetically late cells via receptor-mediated pathway.

About the Authors

V. N. Titov
Research Institute of Pharmacology, Siberian Branch of the Russian Academy of Medical Sciences, Tomsk
Russian Federation
Titov Vladimir N.


A. M. Dygai
Research Institute of Pharmacology, Siberian Branch of the Russian Academy of Medical Sciences, Tomsk
Russian Federation
Dygai Aleksandr M.


M. Yu. Kotlovskiy
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk
Russian Federation
Kotlovskiy Mihail Yu


Ye. V. Kurdoyak
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk
Russian Federation
Kurdoyak Yevgeniya V.


A. V. Yakimenko
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk
Russian Federation
Yakimenko Anna V.


I. Yu. Yakimovich
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk
Russian Federation
Yakimovich Inessa Yu.


N. V. Aksyutina
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk
Russian Federation
Aksyutina Natalya V.


Yu. V. Kotlovskiy
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk
Russian Federation


References

1. Titov V.N. Phylogenetic theory of pathonomia. Pathogenesis of “metabolic pandemics”. Diabetes mellitus. Moscow, INFRA-M Publ., 2014. 222 p. (in Russian).

2. Berry S.E. Triacylglycerol structure and interesterification of palmitic and stearic acid-rich fats: an overview and implications for cardiovascular disease. Nutr. Res. Rev., 2009, vol. 22, no. 1, pp. 3–17.

3. Zambo V., Simon-Szabo L., Szelenyi P.M. Lipotoxicity in the liver. World. L. Hepatol., 2013, vol. 5, no. 10,pp. 550–557.

4. Nelson R.H., Mundi M.S., Vlazny D.T. Kinetics of saturat-ed, monounsaturated, and polyunsaturated fatty acids in humans. Diabetes, 2013, vol. 62, no. 3, pp. 783–788.

5. Sanders T., Filippou A., Berry S.E. Palmitic acid in the sn-2 position of triacylglycerols acutely influences postprandial lipid metabolism. Am. J. Clin. Nutr., 2011, vol. 94, pp. 1433–1441.

6. Gaster M., Rustan A.C., Beck-Nielsen H. Differential utili-zation of saturated palmitate and unsaturated oleate: evi-dence from cultured myotubes. Diabetes, 2005, vol. 54, no. 3, pp. 648–656.

7. Alkhateeb H., Chabowski A., Glatz J.F.C. Two phases of palmitate-induced insulin resistance in skeletal muscle: im-paired GLUT4 translocation is followed by a reduced GLUT4 intrinsic activity. Am. J. Physiol. Endocrinol. Metab., 2007, vol. 293, no. 3, pp. 783–793.

8. Hultin M., Savonen R., Chevreuil O., Olivercona T. Chylomicron metabolism in rats: kinetic modeling indicates that the particles remain at endothelial sites for minutes. J. Lipid. Res., 2013, vol. 54, no. 10, pp. 2595–2605.

9. Ricchi M., Odoardi M.R., Carulli L. et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J. Gastroenterol. Hepatol., 2009, vol. 24, no. 5, pp. 830–840.

10. Karupaian T., Tan C.H., Chinna K., Sundram K. The chain length of dietary saturated fatty acids affects human post-prandial lipemia. J. Am. Coll. Nutr., 2011, vol. 30, no. 6, pp. 511–521.

11. Titov V.N. Vysokoe soderzhanie pal'mitinovoj zhirnoj kisloty v pische – osnovnaya prichina povysheniya holesterina lipoproteinov nizkoi plotnosti i ateromatoza intimy arterij [High dietary content of palmitic fatty acids is the major cause of increase in low-density lipoprotein cholesterol and arterial intima atheromatosis]. Ateroskleroz i dislipidemii – Atherosclerosis and dyslipidemia, 2012, no. 3, pp. 48–63 (in Russian).

12. Titov V.N. Phylogenetic theory of pathonomia. Pathogenesis of civilization diseases. Atherosclerosis. Moscow, INFRA-M Publ., 2014. 234 p. (in Russian).

13. Kaneva A.M., Potolitsyna N.N., Boiko B.R. Rol' apolipoproteina-E v razvitii gipertrigliceridemii u zhitelei evropeiskogo severa Rossii. Izvestija Komi nauchnogo centra UrO RAN – News of Komi Scientific Center, Ural Branch of RAS, 2011, no. 8, pp. 12–16.

14. McLaren D.G., Cardasis H.L., Stout S.J. et al. Use of [13C18] oleic acid and mass isotopomer distribution analysis to study synthesis of plasma triglycerides in vivo: analytical and experimental considerations. Anal. Chem., 2013, vol. 85, no. 13, pp. 6287–6294.

15. Nikitin Yu.P. Novye fundamental'nye i prikladnye osnovy aterogeneza. Byul. SB RAMN, 2006, vol. 2, no. 120, pp. 6–16 (in Russian).

16. Eguchi K., Manabe I., Oishi-Tanaka Y. et al. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell. Metab., 2012, vol. 15, no. 4, pp. 518–533.

17. Natochin Yu.V. Fiziologicheskaja jevoljucija zhivotnyh: natrij – klyuch k razresheniyu protivorechii. Vestnik RAMN, 2007, vol. 779, no. 11, pp. 999–1010 (in Russian).

18. Guo X., Li H., Hu X. et al. Palmitoleate induces hepatic steatosis but suppresses liver inflammatory response in mice. PLoS ONE, 2012, vol. 7, no. 6, pp. 39286–39294.

19. Sanders T.A., Filippou A., Berry S.E. et al. Palmitic acid in the sn-2 position of triacylglycerols acutely influences postprandial lipid metabolism. Am. J. Clin. Nutr., 2011, vol. 94, no. 6, pp. 1433–1441.

20. Arsic A., Vucic V., Prekajski N. et al. Different fatty acid composition of serum phospholipids of small and appropriate for gestational age preterm infants and of milk from their mothers. Hippokratia, 2012, vol. 16, no. 3, pp. 230–235.

21. Titov V.N. Formation of biological function of locomotion and insulin system in phylogenesis; biological basis of hoemone action. Biol. Bull. Rev., 2012, vol. 2, no. 4, pp. 318–332.

22. Liu X., Miyazaki M., Flowers M.T. et al. Loss of Stearoyl-CoA desaturase-1 attenuates adipocyte inflammation: ef-fects of adipocyte-derived oleate. Arterioscler. Thromb. Vasc. Biol., 2010, vol. 30, no. 1, pp. 31–38.

23. Fan B., Gu J.Q., Yan R. et al. High glucose, insulin and free fatty acid concentrations synergistically enhance perilipin 3 expression and lipid accumulation in macrophages. Metabolism, 2013, vol. 62, no. 8, pp. 1168–1179.

24. Titov V.N., Konovalova G.G., Lisicyn D.M. et al. Kinetika okislenija zhirnyh kislot v lipidah lipoproteinov nizkoj plotnosti na osnovanii registracii rashoda okislitelja i prirosta produkta reakcii. Byul. eksp. biol. i mediciny, 2005, vol. 140, no. 7, pp. 45–47 (in Russian).

25. Bonen A., Holloway G.P., Tandon N.N. et al. Cardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol and fatty acid oxidation in lean and Zucker diabetic fatty rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, vol. 297, pp. 1202–1212.

26. Hodson L., McQuaid S.E., Karpe F. et al. Differences in partitioning of meal fatty acids into blood lipid fractions: a comparison of linoleate, oleate, and palmitate. Am. Physiol. Endocrinol. Metab., 2009, vol. 296, pp. 64–71.

27. Brokenhofer H., Jenson R. Lipolytic enzymes. Moscow, Mir Publ., 1978. (in Russian).

28. Кanaley J.A., Shadid S., Sheehan M.T. et al. Hyperinsulinemia and skeletal muscle fatty acid trafficking. Am. J. Physiol. Endocrinol. Metab., 2013, vol. 305, no. 4, pp. 540–548.

29. Oh J.M., Choi J.M., Lee J.Y. et al. Effects of palmitic acid on TNF-α-induced cytotoxicity in SK-Hep-1 cells. Toxicol. In vitro, 2012, vol. 26, no. 6, pp. 783–790.

30. Bolsoni-Lopes A., Festuccia W.T., Farias T.S. et al. Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content in a PPARα-dependent manner. Am. J. Physiol. Endocrinol. Metab., 2013, vol. 305, no. 9, pp. 1093–1102.

31. Frikke-Schmidt H., Pedersen T.A., Fledelius C. et al. Adi-pose weight gain during chronic insulin treatment of mice results from changes in lipid storage without affecting de novo synthesis of palmitate. PLoS ONE, 2013, vol. 8, no. 9, pp. 76060–760768.

32. Zhou Y.E., Egeland G.M., Meltzer S.J., Kubov S. The association of desaturase 9 and plasma fatty acid composition with insulin resistance-associated factors in female adolescents. Metabolism, 2009, vol. 58, no. 20, pp. 158–166.

33. Lu Y., Qian L., Zhang Q. et al. Palmitate induces apoptosis in mouse aortic endothelial cells and endothelial dys-function in mice fed high-calorie and high-cholesterol diets. Life. Sci., 2013, vol. 92, no. 24–26, pp. 1165–1173.

34. Mityanina V.A., Parshina E.Yu., Yusipovich A.L. et al. Kislorod svyazyvajushhie svoistva eritrocitov detei s diabetom pervogo tipa i raznoi prodolzhitel'nostiyu zabolevaniya. Byul. eksp. biol. i mediciny, 2012, vol. 153, no. 4, pp. 508–512.(in Russian).

35. Boren J., Lookene A., Makoveichuk E. et al. Binding of low density lipoproteins to lipoprotein lipase is dependent on lipids but not on apolipoprotein B. J. Biol. Chem., 2001, vol. 276, no. 29, pp. 26916–2622.

36. Ali A.H., Koutsari C., Mundi M. et al. Free fatty acid stor-age in human visceral and subcutaneous adipose tissue: role of adipocyte proteins. Diabetes, 2011, vol. 60, no. 9, pp. 2300–2307.

37. Akmurzina V.A. Searchings of lipid markers associated with the emergence of late complications of diabetes melli-tus type 1. Author. dis. cand. chem. sci. Moscow, 2012. 22 p. (in Russian).


Review

For citations:


Titov V.N., Dygai A.M., Kotlovskiy M.Yu., Kurdoyak Ye.V., Yakimenko A.V., Yakimovich I.Yu., Aksyutina N.V., Kotlovskiy Yu.V. PALMITIC AND OLEIC ACIDS AND THEIR ROLE IN PATHOGENESIS OF ATHEROSCLEROSIS. Bulletin of Siberian Medicine. 2014;13(5):149-159. (In Russ.) https://doi.org/10.20538/1682-0363-2014-5-149-159

Views: 2256


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)