Effect of DNA methylation modulators on the production of osteoprotegerin by rheumatoid fibroblast-like synoviocytes in vitro: their migration and invasion
https://doi.org/10.20538/1682-0363-2019-3-116-124
Abstract
Objective. The purpose of the research was to study the effect of DNA methylation modulators on the production of proinflammatory cytokines by fibroblast-like synovial cells (FLC).
Materials and methods. We used the cells derived from the synovial tissue of 6 patients with active rheumatoid arthritis (RA) after 3–7 in vitro culturing passages.
Results. There was an IL-1β-induced up-regulation of osteoprotegerin (OPG) synthesis in the RA FLC cultures. The addition of methylating compounds S-Adenosyl methionine (SAMe) and genistein into the cultures resulted in a statistically significant decrease in the production of OPG, while the addition of the demethylating agent hydralazine did not change the synthesis of the cytokine. All three DNA methylation modulators used at different concentrations significantly reduced the percentage of spontaneous migration and invasion of FLC in the Boyden chamber.
Conclusion. Enzymes and molecular complexes involved in DNA methylation could be potential therapeutic targets, and in vitro FLC cultures of RA patients can be used as a model for preclinical screening of new drug compounds.
About the Authors
M. A. ShnayderRussian Federation
PhD Student, Laboratory of Clinical Immunopharmacology,
14, Yadrintsevskaya Str., Novosibirsk, 630099
V. S. Shirinsky
Russian Federation
DM, Professor, Main Researcher,
14, Yadrintsevskaya Str., Novosibirsk, 630099
N. Y. Kalinovskaya
Russian Federation
PhD, Researcher,
14, Yadrintsevskaya Str., Novosibirsk, 630099
I. V. Shirinsky
Russian Federation
DM, Leading Researcher,
14, Yadrintsevskaya Str., Novosibirsk, 630099
References
1. Huber L.C., Distler O., Tarner I., Gay R.E., Gay S., Pap T. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford). 2006; 45 (6): 669–675. DOI: 10.1093/rheumatology/kel065.
2. Müller-Ladner U., Kriegsmann J., Franklin B.N., Matsumoto S., Geiler T., Gay R.E., Gay S. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am. J. Pathol. 1996; 149 (5): 1607–1615.
3. Lefèvre S., Knedla A., Tennie C., Kampmann A., Wunrau C., Dinser R., Korb A., Schnäker E.M., Tarner I.H., Robbins P.D., Evans C.H, Stürz H., Steinmeyer J., Gay S., Schölmerich J., Pap T., Müller-Ladner U., Neumann E. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 2009; 15 (12): 1414–1420. DOI: 10.1038/nm.2050.
4. Шнайдер М.А., Ширинский В.С., Ширинский И.В. Культура фибробластоподобных синовиальных клеток больных ревматоидным артритом: свойства и возможности. Медицинская иммунология. 2016; 18 (2): 107–118. [Schneider M.A., Shirinsky V.S., Shirinsky I.V. Cultures of fibroblast-like synovial cells from patients with rheumatoid arthritis: properties and opportunities. Medical Immunology. 2016; 18 (2): 107–118 (in Russ.)]. DOI: 10.15789/1563-0625-2016-2-107-118.
5. Boyle W.J., Simonet W.S., Lacey D.L. Osteoclast differentiation and activation. Nature. 2003; 423: 337–342. DOI: 10.1038/nature01658.
6. Takayanagi H., Oda H., Yamamoto S., Kawaguchi H., Tanaka S., Nishikawa T., Koshihara Y. A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem. Biophys. Res. Commun. 1997; 240 (2): 279–286. DOI: 10.1006/bbrc.1997.7404.
7. Lacey D.L., Timms E., Tan H.-L., Kelley M.J., Dunstan C.R., Burgess T., Elliot R., Colombero A., Elliot G., Scully S., Hsu H., Sullivan J., Hawkins N., Davy E., Capparelli C., Eli A., Qian Y.X., Kaufman S., Sarosi I., Shalhoub V., Senaldi G., Guo J., Delaney J., Boyle W.J. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998; 93: 165–176. DOI: 10.1016/S0092-8674(00)81569-X.
8. Haynes D.R., Barg E., Crotti T.N., Holding C., Weedon H., Atkins G.J., Zannetino A., Ahern M.J., Coleman M., Roberts-Thomson P.J., Kraan M., Tak P.P., Smith M.D. Osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathies and osteoarthritis and normal controls. Rheumatology (Oxford), 2003. 42 (1): 123–134.
9. Crotti T.N., Ahern M.J., Lange K., Weedon H., Coleman M., Roberts-Thomson P.J., Haynes D.R., Smith M.D. Variability of RANKL and osteoprotegerin staining in synovial tissue from patients with active rheumatoid arthritis: quantification using color video image analysis. J. Rheumatol. 2003; 30 (11): 2319–2324.
10. Fonseca J.E., Cortez-Dias N., Francisco A., Sobral M., Canhão H., Resende C., Castelão W., Macieira C., Sequeira G., Saraiva F., Pereira da Silva J.A., Carmo-Fonseca M., Viana Queiroz M. Inflammatory cell infiltrate and RANKL/OPG expression in rheumatoid synovium: comparison with other inflamatory arthropathies and correlation with outcome. Clin. Exp. Rheumatol. 2005; 23 (2): 185–192.
11. Skoumal M., Kolarz G., Haberhauer G., Woloszczuk W., Hawa G., Klingler A. Osteoprotegerin and the receptor activator of NF-kappa B ligand in the serum and synovial fluid. A comparison of patients with longstanding rheumatoid arthritis and osteoarthritis. Rheumatol. Int. 2005; 26 (1): 63–69. DOI: 10.1007/s00296-004-0579-1.
12. Moutasim K.A., Nystrom M.L., Thomas G.J. Cell migration and invasion assays. Methods in Molecular Biology. 2011; 731: 333–343. DOI: 10.1007/978-1-61779-080-5_27.
13. Bartok B., Firestein G.S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010; 233 (1): 233–255. DOI: 10.1111/j.0105-2896.2009.00859.x.
14. Portela A., Esteller M. Epigenetic modifications and human diseases. Nat. Biotechnol. 2010; 28 (10): 1057–1068. DOI: 10.1038/nbt.1685.
15. Dolinoy D.C., Weidman J.R., Waterland R.A., Jirtle R.L. Maternal genistein alters coat color and protects avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 2006; 114 (4): 567–572. DOI: 10.1289/ehp.8700.
16. Li J., Gang D., Yu X., Hu Y., Yue Y., Cheng W., Pan X., Zhang P. Genistein: the potential for efficacy in rheumatoid arthritis. Clin. Rheumatol. 2013; 32 (5): 535–540. DOI: 10.1007/s10067-012-2148-4.
17. Arce C., Segura-Pacheco B., Perez-Cardenas E., TajaChayeb L., Candelaria M., Duennas-Gonzalez A. Hydralazine target: from blood vessels to the epigenome. J. Transl. Med. 2006; 4: 10–22. DOI: 10.1186/1479-5876-4-10.
18. Lydersen S. Statistical review: frequently given comments. Ann. Rheum. Dis. 2015; 74 (2): 323–325. DOI: 10.1136/annrheumdis-2014-206186.
19. Firestein G.S. Etiology and pathogenesis of rheumatoid arthritis. In: Firestein G.S., Budd R.C., Harris T., McInnes I.B., Ruddy S., Sergent J.S., editors. Kelly’s Textbook of Rheumatology. Philadelphia, PA: Saunders Elsevier, 2009: 1035–1086. DOI: 10.1016/B978-0-323-31696-5.00069-3.
20. Redlich K., Hayer S., Ricci R., David J.P., Tohidast-Akrad M., Kollias G., Steiner G., Smolen J.S., Wagner E.F., Schett G. Osteoclasts are essential for TNF-a-mediated joint destruction. J. Clin. Invest. 2002; 110 (10): 1419–1427. DOI: 10.1172/JCI15582.
21. Bromley M., Woolley D.E. Chondrocytes and osteoclasts at subchondral sites of erosions in the rheumatoid joint. Arthitis Rheum. 1984; 27 (9): 968–975.
22. Gravallese E.M., Manning C., Tsay A., Naito A., Pan C., Amento E., Goldring S.R. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000; 43: 250–258. DOI: 10.1002/1529-0131(200002)43:23.0.co;2-p
23. Yasuda H., Shima N., Nakagawa N., Yamaguchi K., Kinosaki M., Mochizuki S.-I., Tomoyasu A., Yano K., Goto M., Murakami A., Tsuda E., Morinaga T., Higashio K., Udagawa N., Takahashi N., Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Nat. Acad. Sci. USA. 1998; 95 (7): 3597–3602.
24. Simonet W.S., Lacey D.L., Dunstan C.R., Kelley M., Chang M.S., Lüthy R., Nguyen H.Q., Wooden S., Bennett L., Boone T., Shimamoto G., DeRose M., Elliott R., Colombero A., Tan H.L., Trail G., Sullivan J., Davy E., Bucay N., Renshaw-Gegg L., Hughes T.M., Hill D., Pattison W., Campbell P., Sander S., Van G., Tarpley J., Derby P., Lee R., Boyle W.J. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997; 89: 309–319. DOI: 10.1016/S0092-8674(00)80209-3.
25. Hofbauer L.C., Khosla S., Dunstan C.R., Lacey D.L., Boyle W.J., Riggs B.L. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J. Bone Miner. Res. 2000; 15: 2–12. DOI: 10.1359/jbmr.2000.15.1.2.
26. Yano K., Nakagawa N., Yasuda H., Tsuda E., Higashio K. Synovial cells from a patient with rheumatoid arthritis produce osteoclastogenesis inhibitory factor/ osteoprotegerin: reciprocal regulation of the production by inflammatory cytokines and basic fibroblast growth factor. J. Bone Miner. Metab. 2001; 19 (6): 365–372. DOI: 10.1007/s007740170006.
27. Klein K., Ospelt C., Gay S. Epigenetic contributions in the development of rheumatoid arthritis. Arthritis Res. Ther. 2012; 14 (6): 227. DOI: 10.1186/ar4074.
28. Bustamante M.F., Garcia-Carbonell R., Whisenant K.D., Guma M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis. Res. Ther. 2017; 19 (1): 110. DOI: 10.1186/s13075-017-1303-3.
29. Kramer N., Walzl A., Unger C., Rosner M., Krupitza G., Hengstschläger M., Dolznig H. In vitro cell migration and invаsion assays. Mutat. Res. 2013; 752 (1): 10–24. DOI: 10.1016/j.mrrev.2012.08.001.
30. Shelef M.A., Bennin D.A., Yasmin N., Warner T.F., Ludwig T., Beggs H.E., Huttenlocher A. Focal adhesion kinase is required for synovial fibroblast invasion, but not murine inflammatory arthritis. Arthritis Res. Ther. 2014; 16 (5): 464. DOI: 10.1186/s13075-014-0464-6.
Review
For citations:
Shnayder M.A., Shirinsky V.S., Kalinovskaya N.Y., Shirinsky I.V. Effect of DNA methylation modulators on the production of osteoprotegerin by rheumatoid fibroblast-like synoviocytes in vitro: their migration and invasion. Bulletin of Siberian Medicine. 2019;18(3):116-124. (In Russ.) https://doi.org/10.20538/1682-0363-2019-3-116-124