Alternative scaffolds in radionuclide diagnosis of malignancies
https://doi.org/10.20538/1682-0363-2019-3-125-133
Abstract
This review discusses a relatively new class of targeted molecules that is being actively studied for radionuclide diagnosis and treatment of malignancies. The full-size antibodies used so far have non-optimal pharmacological properties, slow distribution in the body, poor penetration into the tissue and kidney excretion, and high immunogenicity, which significantly complicates their use in clinical practice. Over the past decade, a new class of targeted molecules, called “non-immunoglobulin scaffolds” have become popular; they have all the requirements for optimal delivery of a radionuclide to tumor cells. Scaffolds usually are smaller in size in comparison with antibodies, but they are larger than peptides, and are characterized by high affinity and optimal biochemical, biophysical, biological, and economic features. The advantages of such proteins are their stable structure, good penetration into tissues, the possibility of additional functionalization and expression in the bacterial system, which ensures low production costs.
The results of preclinical and clinical studies for diagnosis of malignancies using such proteins as affibody, adnectin, DARPins, etc., have demonstrated their high specificity, affinity, good tolerance and low immunogenicity.
About the Authors
O. D. BraginaRussian Federation
PhD, Junior Researcher, Nuclear Medicine Department,
5, Kooperativny Str., Tomsk, 634009
V. I. Chernov
Russian Federation
DM, Professor, Head of the Nuclear Medicine Department, 5, Kooperativny Str., Tomsk, 634009;
30, Lenina Av., 634050, Tomsk
R. V. Zeltchan
Russian Federation
PhD, Radiologist, Nuclear Medicine Department,
5, Kooperativny Str., Tomsk, 634009
I. G. Sinilkin
Russian Federation
PhD, Senior Researcher, Nuclear Medicine Department,
5, Kooperativny Str., Tomsk, 634009
A. A. Medvedeva
Russian Federation
PhD, Senior Researcher, Nuclear Medicine Department,
5, Kooperativny Str., Tomsk, 634009
M. S. Larkina
Russian Federation
PhD, Associate Professor, Pharmaceutical Analysis Division,
2, Moscow Trakt, 634050, Tomsk
References
1. Chernov V.I., Medvedeva A.A., Sinilkin I.G., Zelchan R.V., Bragina O.D., Choynzonov E.L. Nuclear medicine as a tool for diagnosis and targeted cancer therapy. Bulletin of Siberian Medicine. 2018; 17 (1): 220–231 (in Russ.).
2. Tolmachev V., Orlova A., Andersson K. Methods for radiolabelling of monoclonal antibodies. Methods Mol. Biol. 2014; 1060: 309–330. DOI: 10.1007/978-1-62703-586-6-16.
3. Chernov V.I., Bragina O.D., Sinilkin I.G., Medvedeva A.A., Zelchan R.V. Radioimmunotherapy: Current state of the problem. Oncological Questions. 2016; 62 (1): 24–30 (in Russ.).
4. Nicholes N., Date A., Beaujean P., Hauk P, Kanwar M, Ostermeier M. Modular protein switches derived from antibody mimetic proteins. Protein Engineering, Design and Selection. 2016; 29: 77–85. DOI: 10.1093/protein/gzv062.
5. Chernov V.I., Bragina O.D., Sinilkin I.G., Medvedeva A.A., Titskaya A.A., Zelchan R.V. Radioimmunotherapy in the treatment of malignancies. Siberian Journal of Oncology. 2016; 15 (2): 101–106 (in Russ.). DOI: 10.21294/1814-4861-2016-15-2-101-106.
6. Stumpp M., Binz H., Amstutz P. DARPins: A new generation of protein therapeutics. Drug Discovery Today. 2008; 13 (15–16): 695–701. DOI: 10.1016/j.drudis.2008.04.013.
7. Vazquez-Lombardi R., Giang Phan T., Zimmermann C., Lowe D., Jermutus L., Christ D. Challenges and opportunities for non-antibody scaffold drugs. Drug Discovery Today. 2015; 20 (10): 1271–1283. DOI: 10.1016/j.drudis.2015.09.004.
8. Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 2015; 55: 489–511. DOI: 10.1146/annurev-pharmtox-010611-134654.
9. Azhar A., Ahmad E., Zia Q., Rauf M.A., Owais M., Ashraf G.M. Recent advances in the development of novel protein scaffolds based therapeutics. International Journal of Biological Macromolecules. 2017; 102: 630–641. DOI: 10.1016/j.ijbiomac.2017.04.045.
10. Hausammann S., Vogel M., Kremer J.A. Designed ankyrin repeat proteins: A new approach to mimic complex antigens for diagnostic purposes? PLoS One. 2013; 8: 1–9. DOI: 10.1371/journal.pone.0060688.
11. Moody P., Chudasama V., Nathani R.I., Maruani A., Martin S., Smith M.B., Caddick S. A rapid, site-selective and efficient route to the dual modification of DARPins. Chem. Commun. (Camb.). 2014: 50 (38): 4898–4900. DOI: 10.1039/c4cc00053f.
12. Kramer L., Renko M., Završnik J., Turk D., Seeger M.A., Vasiljeva O., Grütter M.G., Turk V., Turk B. Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin. Theranostics. 2017; 7 (11): 2806–2821. DOI: 10.7150/thno.19081.
13. Houlihan G., Gatti-Lafranconi P., Lowe D., Hollfelder F. Directed evolution of anti-HER2 DARPins by SNAP display reveals stability/function trade-offs in the selection process. Protein Eng. Des. Sel. 2015; 28 (9): 269–279. DOI: 10.1093/protein/gzv029.
14. Krasniqi A., D’Huyvetter M., Devoogdt N., Frejd F. Y., Sorensen J., Orlova A., Keyaerts M., Tolmachev V. Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology. Journal of Nuclear Medicine. 2018; 59 (6): 885–891. DOI: 10.2967/ jnumed.117.199901.
15. Boersma Y., Pluckthun A. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr. Opin. Biotechnol. 2011; 22 (6): 849–857. DOI: 10.1016/j.copbio.2011.06.004.
16. Binz H., Stumpp M., Forrer P., Amstutz P., Plückthun A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 2003; 332 (2): 489–503. DOI: 10.1016/S0022-2836(03)00896-9.
17. Buday L., Tompa P. Functional classification of scaffold proteins and related molecules. The FEBS Journal. 2010; 277 (21): 4348–4355. DOI: 10.1111/j.1742-4658.2010.07864.x.
18. Петровская Л.Е., Шингарова Л.Н., Долгих Д.А., Кирпичников М.П. Альтернативные каркасные белки. Биоорганическая химия. 2011; 37 (5): 581–591. [Petrovskaya L.E., Shingarova L.N., Dolgikh D.A., Kirpichnikov M.P. Alternative Scaffold Proteins. Bioorganic Chemistry. 2011; 37 (5): 581–591 (in Russ.)].
19. Frejd F.Y., Kim K. Affibody molecules as engineered protein drugs. Experimental & Molecular Medicine. 2017; 49 (3): e306. DOI: 10.1038/emm.2017.35.
20. Good M.C., Zalatan J.G., Lim W.A. Scaffold Proteins: Hubs for Controlling the Flow of Cellular Information. Science. 2011; 332 (6030): 680–686. DOI: 10.1126/science.1198701.
21. Simeon R., Chen Z. In vitro-engineered non-antibody protein therapeutics. Protein Cell. 2018; 9 (1): 3–14. DOI: 10.1007/s13238-017-0386-6.
22. De Vos J., Devoogdt N., Lahoutte T., Muyldermans S. Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target. Expert Opin. Biol. Ther. 2013; 13 (8): 1149–1160. DOI: 10.1517/14712598.2013.800478.
23. Miao Z., Levi J., Cheng Z. Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids. 2011; 41 (5): 1037–1047. DOI: 10.1007/s00726-010-0503-9.
24. Sorensen J., Sandberg D., Sandstrom M., Wennborg A., Feldwisch J., Tolmachev V., Åström G., Lubberink M., Garske-Román U., Carlsson J., Lindman H. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J. Nucl. Med. 2014; 55 (5): 730–735. DOI: 10.2967/ jnumed.113.131243.
25. Sorensen J., Velikyan I., Sandberg D., Wennborg A., Feldwisch J., Tolmachev V., Orlova A., Sandström M., Lubberink M., Olofsson H., Carlsson J., Lindman H. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 Affibody PET/CT. Theranostics. 2016; 6 (2): 262–271. DOI: 10.7150/thno.13502.
26. Sandstrom M., Lindskog K., Velikyan I., Wennborg A., Feldwisch J., Sandberg D., Tolmachev V., Orlova A., Sörensen J., Carlsson J., Lindman H., Lubberink M. Biodistribution and radiation dosimetry of the anti-HER2 Affibody molecule 68Ga-ABY-025 in breast cancer patients. J. Nucl. Med. 2016; 57 (6): 867–871. DOI: 10.2967/jnumed.115.169342.
27. Nahta R., Yu D., Hung M.C., Hortobagyi G.N., Esteva F.J. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat. Clin. Pract. Oncol. 2006; 3 (5): 269–280.
28. Garousi J., Honarvar H., Andersson K.G., Mitran B., Orlova A., Buijs J., Löfblom J., Frejd F.Y., Tolmachev V. Comparative evaluation of Affibody molecules for radionuclide imaging of in vivo expression of carbonic anhydrase IX. Mol. Pharm. 2016; 13 (11): 3676–3687. DOI: 10.1021/acs.molpharmaceut.6b00502.
29. Strand J., Varasteh Z., Eriksson O., Abrahmsen L., Orlova A., Tolmachev V. Gallium-68-labeled affibody molecule for PET imaging of PDGFR beta expression in vivo. Mol. Pharm. 2014; 11 (11): 3957–3964. DOI: 10.1021/mp500284t.
30. Hanenberg M., McAfoose J., Kulic L. Amyloid-β peptide-specific DARPins as a novel class of potential therapeutics for Alzheimer disease. J. Biol. Chem. 2014; 289 (39): 27080–27089. DOI: 10.1074/jbc.M114.564013.
31. Tamaskovic R., Simon M., Stefan N., Schwill M., Plückthun A. Designed ankyrin repeat proteins (DARPins) from research to therapy. Methods Enzymol. 2012; 503: 101–134. DOI: 10.1016/B978-0-12-396962-0.00005-7.
32. Goldstein R., Sosabowski J., Livanos M., Leyton J., Vigor K., Bhavsar G., Nagy-Davidescu G., Rashid M., Miranda E., Yeung J., Tolner B., Plückthun A., Mather S., Meyer T., Chester K. Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. Eur. J. Nucl. Med. Mol. Imaging. 2015; 42 (2): 288–301. DOI: 10.1007/s00259-014-2940-2.
33. Vorobyeva A., Bragina O., Altai M., Mitran B., Orlova A., Shulga A., Proshkina G., Chernov V., Tolmachev V., Deyev S. Comparative Evaluation of Radioiodine and Technetium-Labeled DARPin 9_29 for Radionuclide Molecular Imaging of HER2 Expression in Malignant Tumors. Contrast Media & Molecular Imaging. 2018; 2018: 6930425. DOI: 10.1155/2018/6930425.
34. Bragina O.D., Larkina M.S., Stasyuk E.S., Chernov V.I., Yusubov M.S., Skuridin V.S., Deyev S.M., Zelchan R.V., Buldakov M.A., Podrezova E.V., Belousov M.V. Development of highly specific radiochemical compounds based on 99m Tclabeled recombinant molecules for targeted imaging of cells overexpressing Her-2/neu. Bulletin of Siberian Medicine. 2017; 16 (3): 25–33 (in Russ.). DOI: 10.20538/1682-0363-2017-3-25–33.
35. Garousi J., Lindbo S., Nilvebrant J., Åstrand M., Buijs J., Sandström M., Honarvar H., Orlova A., Tolmachev V., Hober S. ADAPT, a novel scaffold protein-based probe for radionuclide imaging of molecular targets that are expressed in disseminated cancers. Cancer Res. 2015; 75: 4364–4371. DOI: 10.1158/0008-5472.CAN-14-3497.
36. Lindbo S., Garousi J., Mitran B., Altai M., Buijs J., Orlova A., Hober S., Tolmachev V. Radionuclide tumor targeting using ADAPT scaffold proteins: aspects of label positioning and residualizing properties of the label. J. Nucl. Med. 2018; 59 (1): 93–99. DOI: 10.2967/jnumed.117.197202.
37. Natarajan A., Hackel B.J., Gambhir S.S. A novel engineered anti-CD20 tracer enables early time PET imaging in a humanized transgenic mouse model of B-cell non-Hodgkins lymphoma. Clin. Cancer Res. 2013; 19 (24): 6820–6829. DOI: 10.1158/1078-0432.CCR-13-0626.
38. Donnelly D.J., Smith R.A., Morin P., Lipovšek D., Gokemeijer J., Cohen D., Lafont V., Tran T., Cole E.L., Wright M., Kim J., Pena A., Kukral D., Dischino D.D., Chow P., Gan J., Adelakun O., Wang X.T., Cao K., Leung D., Bonacorsi S.J. Jr., Hayes W. Synthesis and biological evaluation of a novel 18F-labeled Adnectin as a PET radioligand for imaging PD-L1 expression. J. Nucl. Med. 2018; 59 (3): 529–535. DOI: 10.2967/jnumed.117.199596.
Review
For citations:
Bragina O.D., Chernov V.I., Zeltchan R.V., Sinilkin I.G., Medvedeva A.A., Larkina M.S. Alternative scaffolds in radionuclide diagnosis of malignancies. Bulletin of Siberian Medicine. 2019;18(3):125-133. (In Russ.) https://doi.org/10.20538/1682-0363-2019-3-125-133