Preview

Bulletin of Siberian Medicine

Advanced search

Mitochondrial DNA as DAMP in critical conditions

https://doi.org/10.20538/1682-0363-2019-3-134-143

Abstract

The focus of the researchers’ attention today includes the recently discovered role of mitochondria in the immune response. Increasing evidence shows that mitochondrial DNA, in retaining some of their characteristics of the ancient α-proteobacteria’s genome, is a potent immune stimulus for inflammatory reactions. Systemic inflammatory response is a frequent complication in surgical interventions and various traumas, and its development cannot be explained using common conceptions. This review provides information on the current understanding of the development of inflammation mediated by mtDNA, including systemic inflammatory response, and on the mechanisms regulating mitochondrial homeostasis and mtDNA release in various pathological conditions.

About the Authors

E. V. Grigoriev
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University (KSMU)
Russian Federation

DM, Professor, Deputy Director for Scientific and Clinical Affairs, 6, Sosnoviy Blvd, Kemerovo, 650002;

Head of the Department of Anesthesiology and Critical Care, 22a, Voroshilov Str., Kemerovo, 650000



R. R. Salakhov
Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

PhD, Researcher, Laboratory of Population Genetics, 

10, Naberezhnaya Ushaiki Str., Tomsk, 634050



M. V. Golubenko
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases; Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

Leading Researcher, Laboratory for Genomic Medicine, 6, Sosnoviy Blvd, Kemerovo, 650002;

PhD, Senior Researcher, Laboratory of Population Genetics, 10, Naberezhnaya Ushaiki Str., Tomsk, 634050



A. V. Ponasenko
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

PhD, Head of the Laboratory for Genomic Medicine, 

6, Sosnoviy Blvd, Kemerovo, 650002



D. L. Shukevich
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University (KSMU)
Russian Federation

DM, Head of the Laboratory for Critical Care, 6, Sosnoviy Blvd, Kemerovo, 650002;

Professor, Department of Anaesthesiology and Critical Care, 22a, Voroshilov Str., Kemerovo, 650000



V. G. Matveeva
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

PhD, Senior Researcher, Laboratory for Cell Technologies,

6, Sosnoviy Blvd, Kemerovo, 650002



A. S. Radivilko
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

PhD, Senior Researcher, Laboratory for Critical Care,

6, Sosnoviy Blvd, Kemerovo, 650002



A. V. Tsepokina
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Researcher, Laboratory for Genomic Medicine,

6, Sosnoviy Blvd, Kemerovo, 650002



E. A. Velikanova
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

PhD, Researcher, Laboratory for Cell Technologies,

6, Sosnoviy Blvd, Kemerovo, 650002



R. S. Kornelyuk
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University (KSMU)
Russian Federation

Researcher, Laboratory for Critical Care, 6, Sosnoviy Blvd, Kemerovo, 650002;

Assistant, Department of Anaesthesiology and Critical Care, 22a, Voroshilov Str., Kemerovo, 650000



A. S. Ivkin
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University (KSMU)
Russian Federation

Researcher, Laboratory for Genomic Medicine, 6, Sosnoviy Blvd, Kemerovo, 650002;

Resident, Department of Anaesthesiology and Critical Care, 22a, Voroshilov Str., Kemerovo, 650000



References

1. Friedman J.R., Nunnari J. Mitochondrial form and function. Nature. 2014; 505 (7483): 335–343. DOI: 10.1038/nature12985.

2. Collins L.V., Hajizadeh S., Holme E., Jonsson I.M., Tarkowski A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J. Leukoc Biol. 2004; 75 (6): 99–1000. DOI: 10.1189/jlb.0703328.

3. West A.P., Shadel G.S., Ghosh S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 2011; 11 (6): 389– 402. DOI: 10.1038/nri2975.

4. Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell. 2010; 140 (6): 805–820. DOI: 10.1016/j.cell.2010.01.022.

5. Weinberg S.E., Sena L.A., Chandel N.S. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015; 42 (3): 406–417. DOI: 10.1016/j.immuni.2015.02.002.

6. Nakahira K., Hisata S., Choi A.M. The roles of mitochondrial damage-associated molecular patterns in diseases. Antioxid. Redox. Signal. 2015; 23 (17): 13291350. DOI: 10.1089/ars.2015.6407.

7. Anderson S., Bankier A.T., Barrell B.G., de Bruijn M.H., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J., Staden R., Young I.G. Sequence and organization of the human mitochondrial genome. Nature. 1981; 290 (5806): 457–465.

8. Calvo S.E., Mootha V.K. The mitochondrial proteome and human disease. Annu. Rev. Genomics Hum Genet. 2010; 11: 25–44. DOI: 10.1146/annurev-genom-082509-141720.

9. Nicholls T.J., Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA. Exp. Gerontol. 2014; 56: 175–181. DOI: 10.1016/j.exger.2014.03.027.

10. Nakahira K., Haspel J.A., Rathinam V.A., Lee S.J., Dolinay T., Lam H.C., Englert J.A., Rabinovitch M., Cernadas M., Kim H.P., Fitzgerald K.A., Ryter S.W., Choi A.M. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011; 12(3): 222–230. DOI: 10.1038/ni.1980.

11. Jung S.S., Moon J.S., Xu J.F., Ifedigbo E., Ryter S.W., Choi A.M., Nakahira K. Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. Am. J. Physiol. Lung. Cell Mol. Physiol. 2015; 308: 1058–1067. DOI: 10.1152/ajplung.00400.2014.

12. Won J.H., Park S., Hong S., Son S., Yu J.W. Rotenone-induced impairment of mitochondrial electron transport chain confers a selective priming signal for NLRP3 inflammasome activation. J. Biol. Chem. 2015; 290 (45): 27425–27437. DOI: 10.1074/jbc.M115.667063.

13. Cadete V.J., Deschênes S., Cuillerier A., Brisebois F., Sugiura A., Vincent A., Turnbull D., Picard M., McBride H.M., Burelle Y. Formation of mitochondrial-derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system. J. Physiol. 2016; 594 (18): 5343–5362. DOI: 10.1113/JP272703.

14. Matheoud D., Sugiura A., Bellemare-Pelletier A., Laplante A., Rondeau C., Chemali M., Fazel A., Bergeron J.J., Trudeau L.E., Burelle Y., Gagnon E., McBride H.M., Desjardins M. Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell. 2016; 166: 314–327. DOI: 10.1016/j.cell.2016.05.039.

15. West A.P., Khoury-Hanold W., Staron M., Tal M.C., Pineda C.M., Lang S.M., Bestwick M., Duguay B.A., Raimundo N., MacDuff D.A., Kaech S.M., Smiley J.R., Means R.E., Iwasaki A., Shadel G.S. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015; 520 (7548); 553–557. DOI: 10.1038/nature14156.

16. Kaczmarek A., Vandenabeele P., Krysko D.V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013; 38 (2): 209–223. DOI: 10.1016/j.immuni.2013.02.003.

17. Mangalmurti N., Qing D., Hotz M., Siegel D.L., Sondheimer N., Mangalmurti N.S. Mitochondrial DNA released following necroptosis accumulates on RBCs. Am. J. Respir. Crit. Care Med. 2016; 193: A4309.

18. Boudreau L.H., Duchez A.C., Cloutier N., Soulet D., Martin N., Bollinger J., Paré A., Rousseau M., Naika G.S., Lévesque T., Laflamme C., Marcoux G., Lambeau G., Farndale R.W., Pouliot M., Hamzeh-Cognasse H., Cognasse F., Garraud O., Nigrovic P.A., Guderley H., Lacroix S., Thibault L., Semple J.W., Gelb M.H., Boilard E. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014; 124 (14): 2173–2183. DOI: 10.1182/blood-2014-05-573543.

19. Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K., Akira S. A Toll-like receptor recognizes bacterial DNA. Nature. 2000; 408 (6813): 740–745. DOI: 10.1038/35047123.

20. Kawasaki T., Kawai T. Toll-like receptor signaling pathways. Front. Immunol. 2014; 50: 461. DOI: 10.3389/fimmu.2014.00461.

21. Zhang Q., Itagaki K., Hauser C.J. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock. 2010; 34 (1): 55–59. DOI: 10.1097/SHK.0b013e3181cd8c08.

22. Gan L., Chen X., Sun T., Li Q., Zhang R., Zhang J., Zhong J. Significance of serum mtDNA concentration in lung injury induced by hip fracture. Shock. 2015; 44 (1): 52–57. DOI: 10.1097/SHK.0000000000000366.

23. Tsuji N., Tsuji T., Ohashi N., Kato A., Fujigaki Y., Yasuda H. Role of mitochondrial DNA in septic AKI via Toll-like receptor 9. J. Am. Soc. Nephrol. 2016; 27 (7): 2009–2020. DOI: 10.1681/ASN.2015040376.

24. Oka T., Hikoso S., Yamaguchi O., Taneike M., Takeda T., Tamai T., Oyabu J., Murakawa T., Nakayama H., Nishida K., Akira S., Yamamoto A., Komuro I., Otsu K. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012; 485 (7397): 251–255. DOI: 10.1038/nature10992.

25. Nakayama H., Otsu K. Translation of hemodynamic stress to sterile inflammation in the heart. Trends Endocrinol. Metab. 2013; 24 (11): 546–553. DOI: 10.1016/j.tem.2013.06.004.

26. De Leo M.G., Staiano L., Vicinanza M., Luciani A., Carissimo A., Mutarelli M., Di Campli A., Polishchuk E., Di Tullio G., Morra V., Levtchenko E., Oltrabella F., Starborg T., Santoro M., Di Bernardo D., Devuyst O., Lowe M., Medina D.L., Ballabio A., De Matteis M.A. Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nat. Cell Biol. 2016; 18 (8): 839–850. DOI: 10.1038/ncb3386.

27. Guo H., Callaway J.B., Ting J.P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 2015; 21 (7): 677–687. DOI: 10.1038/nm.3893.

28. Man S.M., Kanneganti T.D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 2016; 16 (1): 7–21. DOI: 10.1038/nri.2015.7.

29. Shimada K., Crother T.R., Karlin J., Dagvadorj J., Chiba N., Chen S., Ramanujan V.K., Wolf A.J., Vergnes L., Ojcius D.M., Rentsendorj A., Vargas M., Guerrero C., Wang Y., Fitzgerald K.A., Underhill D.M., Town T., Arditi M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012; 36 (3): 401–414. DOI: 10.1016/j.immuni.2012.01.009.

30. Yu J., Nagasu H., Murakami T., Hoang H., Broderick L., Hoffman H.M., Horng T. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc. Natl. Acad. Sci. USA. 2014; 111 (43): 15514–15519. DOI: 10.1073/pnas.1414859111.

31. Tumurkhuu G., Shimada K., Dagvadorj J., Crother T.R., Zhang W., Luthringer D., Gottlieb R.A., Chen S., Arditi M. Ogg1-dependent DNA repair regulates NLRP3 inflammasome and prevents atherosclerosis. Circ. Res. 2016; 119 (6): е76–90. DOI: 10.1161/CIRCRESAHA.116.308362.

32. Dib B., Lin H., Maidana D.E., Tian B., Miller J.B., Bouzika P., Miller J.W., Vavvas D.G. Mitochondrial DNA has a pro-inflammatory role in AMD. Biochim. Biophys. Acta. 2015; 1853: 2897–2906. DOI: 10.1016/j.bbamcr.2015.08.012.

33. Hornung V., Latz E. Intracellular DNA recognition. Nat. Rev. Immunol. 2010; 10 (2): 123–130. DOI: 10.1038/nri2690.

34. Ishikawa H., Barber G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008; 455 (7213): 674–678. DOI: 10.1038/nature07317.

35. Rongvaux A., Jackson R., Harman C.C., Li T., West A.P., de Zoete M.R., Wu Y., Yordy B., Lakhani S.A., Kuan C.Y., Taniguchi T., Shadel G.S., Chen Z.J., Iwasaki A., Flavell R.A. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell. 2014; 159 (7): 1563–1577. DOI: 10.1016/j.cell.2014.11.037.

36. White M.J., McArthur K., Metcalf D., Lane R.M., Cambier J.C., Herold M.J., van Delft M.F., Bedoui S., Lessene G., Ritchie M.E., Huang D.C., Kile B.T. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014; 159 (7): 1549–1562. DOI: 10.1016/j.cell.2014.11.036.

37. Kohl B.A., Deutschman C.S. The inflammatory response to surgery and trauma. Curr. Opin. Crit. Care. 2006; 12 (4): 325–332. DOI: 10.1097/01.ccx.0000235210.85073.fc.

38. Ponasenko A.V., Khutornaya M.V., Golovkin A.S., Savostyanova Yu.Yu., Grigorev E.V. Potential role as a proinflammatory cytokines in postoperative severe systemic inflammatory response syndrome undergoing heart valve replacement surgery. Complex Issues of Cardiovascular Diseases. 2013; 4: 71–76 (in Russ.).

39. Hall R. Identification of inflammatory mediators and their modulation by strategies for the management of the systemic inflammatory response during cardiac surgery. Journal of Cardiothoracic and Vascular Anaesthesia. 2013; 27 (5): 983–1033. DOI: 10.1053/j.jvca.2012.09.013.

40. Ponasenko A.V., Golovkin A.S., Grigoriev E.V. Importance of the complement system and C5a subunit in the formation of a systemic inflammatory response in the postoperative period of prosthetics of the heart valves in patients with infections endocarditis. Fundamental Research. 2014; 10 (1): 141–146 (in Russ.).

41. Lam N.Y., Rainer T.H., Chiu R.W., Joynt G.M., Lo Y.M. Plasma mitochondrial DNA concentrations after trauma. Clin Chem. 2004; 50 (1): 213–216. DOI: 10.1373/clinchem.2003.025783.

42. Dolinay T., Kim Y.S., Howrylak J, Hunninghake G.M., An C.H., Fredenburgh L., Massaro A.F., Rogers A., Gazourian L., Nakahira K., Haspel J.A., Landazury R., Eppanapally S., Christie J.D., Meyer N.J., Ware L.B., Christiani D.C., Ryter S.W., Baron R.M., Choi A.M. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am. J. Respir. Crit. Care Med. 2012; 185 (11): 1225–1234. DOI: 10.1164/rccm.201201-0003OC.

43. Nakahira K., Kyung S.Y., Rogers A.J., Gazourian L., Youn S., Massaro A.F., Quintana C., Osorio J.C., Wang Z., Zhao Y., Lawler L.A., Christie J.D., Meyer N.J., McCausland F.R., Waikar S.S., Waxman A.B., Chung R.T.., Bueno R, Rosas I.O., Fredenburgh L.E., Baron R.M., Christiani D.C., Hunninghake G.M., Choi A.M. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med. 2013; 10 (12): e1001577. DOI: 10.1371/journal.pmed.1001577.

44. Gu X., Yao Y., Wu G., Lv T., Luo L., Song Y. The plasma mitochondrial DNA is an independent predictor for post-traumatic systemic inflammatory response syndrome. PLoS One. 2013; 8 (8): e72834. 1 DOI: 10.1371/journal.pone.0072834.

45. McIlroy D.J., Minahan K., Keely S., Lott N., Hansbro P., Smith D.W., Balogh Z.J. Reduced DNASE enzyme activity in response to high post-injury mitochondrial dnaconcentration provides a therapeutic target for SIRS. J. Trauma Acute Care Surg. 2018; 22. DOI: 10.1097/TA.0000000000001919.

46. Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., Hauser C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010; 464 (7285): 104–107. DOI: 10.1038/nature08780.

47. Sun S., Sursal T., Adibnia Y., Zhao C., Zheng Y., Li H., Otterbein L.E., Hauser C.J., Itagaki K. Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PLoS One. 2013; 8 (3): e59989. DOI: 10.1371/journal.pone.0059989.

48. Jansen M.P.B., Pulskens W.P., Butter L.M., Florquin S., Juffermans N.P., Roelofs J.J.T.H., Leemans J.C. Mitochondrial DNA is released in urine of SIRS patients with acute kidney injury and correlates with severity of renal dysfunction. Shock. 2018;49 (3): 301–310. DOI: 10.1097/SHK.0000000000000967.

49. Grigoryev E.V., Plotnikov G.P., Shukevich D.L., Golovkin A.S. Persistent multiorgan failure. Circulation Pathology and Cardiac Surgery. 2014; 3: 82–86 (in Russ.). DOI: 10.21688/1681-3472-2014-3-82-86.

50. Lee Y.L., King M.B., Gonzalez R.P., Brevard S.B., Frotan M.A., Gillespie M.N., Simmons J.D. Blood transfusion products contain mitochondrial DNA damage-associated molecular patterns: a potential effector of transfusion-related acute lung injury. J. Surg. Res. 2014; 191 (2): 286–289. DOI: 10.1016/j.jss.2014.06.003.

51. Simmons J.D., Freno D.R., Muscat C.A., Obiako B., Lee Y.L., Pastukh V.M., Brevard S.B., Gillespie M.N. Mitochondrial DNA damage associated molecular patterns in ventilator-associated pneumonia: Prevention and reversal by intratracheal DNase I. J. Trauma Acute Care Surg. 2017; 82 (1): 120–125. DOI: 10.1097/TA.0000000000001269.

52. Sandler N., Kaczmarek E., Itagaki K., Zheng Y., Otterbein L., Khabbaz K., Liu D., Senthilnathan V., Gruen RL., Hauser C.J. Mitochondrial DAMPs are released during cardiopulmonary bypass surgery and are associated with postoperative atrial fibrillation. Heart Lung Circ. 2018; 27 (1): 122–129. DOI: 10.1016/j.hlc.2017.02.014.

53. Schäfer S.T., Franken L., Adamzik M., Schumak B., Scherag A., Engler A., Schönborn N., Walden J., Koch S., Baba H.A., Steinmann J., Westendorf A.M., Fandrey J., Bieber T., Kurts C., Frede S., Peters J., Limmer A. Mitochondrial DNA: An Endogenous Trigger for Immune Paralysis. Anesthesiology. 2016; 124 (4): 923–33. DOI: 10.1097/ALN.0000000000001008.

54. Bhagirath V.C., Dwivedi D.J., Liaw P.C. Comparison of the proinflammatory and procoagulant properties of nuclear, mitochondrial, and bacterial DNA. Shock. 2015; 44 (3): 265–271. DOI: 10.1097/SHK.0000000000000397.

55. Krychtiuk K.A., Ruhittel S., Hohensinner P.J., Koller L., Kaun C., Lenz M., Bauer B., Wutzlhofer L., Draxler D.F., Maurer G., Huber K., Wojta J., Heinz G., Niessner A., Speidl W.S. Mitochondrial DNA and Toll-like receptor-9 are associated with mortality in critically ill patients. Crit. Care Med. 2015; 43 (12): 2633–2641. DOI: 10.1097/ CCM.0000000000001311.

56. Timmermans K., Kox M., Scheffer G.J., Pickkers P. Mitochondrial DNA levels, and markers of inflammation, shock, and organ damage in patients with septic shock. Shock. 2016; 45 (6): 607–612. DOI: 10.1097/ SHK.0000000000000549.


Review

For citations:


Grigoriev E.V., Salakhov R.R., Golubenko M.V., Ponasenko A.V., Shukevich D.L., Matveeva V.G., Radivilko A.S., Tsepokina A.V., Velikanova E.A., Kornelyuk R.S., Ivkin A.S. Mitochondrial DNA as DAMP in critical conditions. Bulletin of Siberian Medicine. 2019;18(3):134-143. (In Russ.) https://doi.org/10.20538/1682-0363-2019-3-134-143

Views: 1280


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)