Preview

Bulletin of Siberian Medicine

Advanced search

Experimental models of dermatological diseases

https://doi.org/10.20538/1682-0363-2019-3-203-213

Abstract

This review presents analysis of experimental models of atopic dermatitis, psoriasis, skin symptoms of autoimmune systemic connective tissue diseases, and blistering skin diseases. Presented in the review are experimental models of atopic dermatitis which reproduce various stages and types of disease that allows the investigation of disease pathogenesis. Atopic dermatitis can develop spontaneously in Nc/Nga mice. There are atopic dermatitis models initiated by monoclonal IgE injection or epicutant sensitization under dermal barrier disfunction imitation. Genetically modified atopic dermatitis models - transgenic and knockout mice – are convenient for investigation of disease stages, cytokines, antigen-presenting cells and T-cells influence. We show that the psoriasis models created by genetic engineering methods are the most convenient for investigation of the role of particular cell types and specific factors in the disease development. Up-regulation of adhesion molecules, cytokines, transcription factors, inflammation mediators in both keratinocytes and immune cells of transgenic mice reveals their influence on psoriasis pathogenesis. There are descriptions of skin symptom models of autoimmune systemic connective tissue diseases and blistering skin disease models with and without genetic modifications. Each model demonstrates some peculiarities of pathogenesis and disease symptoms, whereas combined use of the models will allow to study the mechanisms of development of atopic dermatitis, psoriasis, blistering skin diseases and skin lesions under autoimmune systemic connective tissue diseases, that will contribute to the development of modern effective methods of treatment.

About the Authors

O. N. Sergeeva
Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky (KrasSMU n.a. prof. V.F. Voyno-Yasenetsky)
Russian Federation

Assistant, Department of Pathological Physiology,

1, P. Zheleznyaka Str., Krasnoyarsk, 660022



M. B. Aksenenko
Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky (KrasSMU n.a. prof. V.F. Voyno-Yasenetsky)
Russian Federation

PhD, Assistant of Professor, Department of Pathological Physiology,

1, P. Zheleznyaka Str., Krasnoyarsk, 660022



Yu. F. Fefelova
Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky (KrasSMU n.a. prof. V.F. Voyno-Yasenetsky)
Russian Federation

DBSc, Assistant of Professor, Department of Pathological Physiology,

1, P. Zheleznyaka Str., Krasnoyarsk, 660022



E. Yu. Sergeeva
Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky (KrasSMU n.a. prof. V.F. Voyno-Yasenetsky)
Russian Federation

DBSc, Professor, Department of Pathological Physiology,

1, P. Zheleznyaka Str., Krasnoyarsk, 660022



T. G. Ruksha
Krasnoyarsk State Medical University n.a. prof. V.F. Voyno-Yasenetsky (KrasSMU n.a. prof. V.F. Voyno-Yasenetsky)
Russian Federation

DM, Head of Department of Pathophysiology,

1, P. Zheleznyaka Str., Krasnoyarsk, 660022



References

1. Wagner E.F., Schonthaler H.B., Guinea-Viniegra J., Tschachler E. Psoriasis: what we have learned from mouse Models. Nat. Rev. Rheumatol. 2010; 6 (12): 704–714. DOI: 10.1038/nrrheum.2010.157.

2. Wang H.X., Hemler M.E. Novel impact of EWI2, CD9, and CD81 on TGF-β signaling in melanoma. Mol. Cell. Oncol. 2015; 2 (1): e1030536. DOI: 10.1080/23723556.2015.1030536.

3. Miyamoto D., Sottoa M.N., Otania C.S.V., Fukumoria L.M.I., Pereiraa N.V., Santia C.G., Marutaa C.W., BurnierJrb M.N.N., Rebeisa M.M., Aokia V. Increased serum levels of vascular endothelial growth factor in pemphigus foliaceus patients with erythroderma. J. Eur. Acad. Dermatol. Venereol. 2016; 31 (2): 333–336. DOI: 10.1111/jdv.13905.

4. Samochocki Z., Bogaczewicz J., Sysa-Jezdrzejowska A., McCauliffe D.P., Kontny E., Wozniacka A. Expression of vascular endothelial growth factor and other cytokines in atopic dermatitis, and correlation with clinical features. Int. J. Dermatol. 2015; 55 (3): e141–146. DOI: 10.1111/ ijd.13132.

5. Bjerre R.D., Bandier J., Skov L., Engstrand L., Johansen J.D. The role of the skin microbiome in atopic dermatitis: a systematic review. Br. J. Dermatol. 2017; 177 (5): 1272–1278. DOI: 10.1111/bjd.15390.

6. Casset A., Mari A., Purohit A., Resch Y., Weghofer M., Ferrara R., Thomas W.R., Alessandri C., Chen K.W., de Blay F., Valenta R., Vrtala S. Varying allergen composition and content affects the in vivo allergenic activity of commercial Dermatophagoidespteronyssinus extracts. Int. Arch. Allergy. Immunol. 2012; 159 (3): 253–262. DOI: 10.1159/000337654.

7. Matsuoka H., Maki N., Yoshida S., Arai M., Wang J., Oikawa Y., Ikeda T., Hirota N., Nakagawa H., Ishii A. A mouse model of the atopic eczema / dermatitis syndrome by repeated application of a crude extract of house-dust mite Dermatophagoidesfarinae. Allergy. 2003; 58 (2): 139–145. DOI: 10.1034/j.1398-9995.2003.23790.x.

8. Laouini D., Alenius H., Bryce P., Oettgen H., Tsitsikov E., Geha R.S. IL-10 is critical for Th2 responses in a murine model of allergic dermatitis. J. Clin. Invest. 2003; 112 (7): 1058–1066. DOI: 10.1172/JCI18246.

9. Martel B.C., Lovato P., Bäumer W. et al. Translational Animal Models of Atopic Dermatitis for Preclinical Studies. Yale. J. Biol. Med. 2017; 90 (3): 389–402.

10. Shi V.Y., Bao L., Chan L.S. Inflammation-driven dermal lymphangiogenesis in atopic dermatitis is associated with CD11b+ macrophage recruitment and VEGF-C up-regulation in the IL-4-transgenic mouse model. Microcirculation. 2012; 19 (7): 567–579. DOI: 10.1111/j.1549-8719.2012.00189. x.

11. Kawasaki H., Nagao K., Kubo A., Hata T., Shimizu A., Mizuno H., Yamada T., Amagai M. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J. Allergy. Clin. Immunol. 2012; 129 (6): 1538–1546. DOI: 10.1016/j.jaci.2012.01.068.

12. Gunschmann C., Chiticariu E., Garg B., Hiz M.M., Mostmans Y., Wehner M., Scharfenberger L. Transgenic mouse technology in skin biology: inducible gene knockout in mice. J. Invest. Dermatol. 2014; 134 (7): 1–4. DOI: 10.1038/jid.2014.213.

13. Yonekawa H., Takada T., Shitara H., Taya C., Matsushima Y., Matsuoka K., Kikkawand Y. Mouse Models for Atopic Dermatitis Developed in Japan. Tokyo: Atopic Dermatitis, 2012: 2–20. DOI: 10.5772/26084.

14. Bae C.J., Shim S.B., Jee S.W., Lee S.H., Kim M.R., Lee J.W., Lee C.K., Hwang D.Y. IL-6, VEGF, KC and RANTES are a major cause of a high irritant dermatitis to phthalic anhydride in C57BL/6 inbred mice. Allergol. Int. 2010; 59 (4): 389–397. DOI: 10.2332/allergolint.10-OA-0207.

15. Zheng T., Oh M.H., Oh S.Y., Schroeder J.T., Glick A.B., Zhu Z. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J. Invest. Dermatol. 2009; 129 (3): 742–751. DOI: 10.1038/jid.2008.295.

16. Yoo J., Omori M., Gyarmati D., Zhou B., Aye T., Brewer A., Comeau M.R., Campbell D.J., Ziegler S.F. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 2005; 202 (4): 541–549. DOI: 10.1084/jem.20041503.

17. Dumortier A., Durham A.D., Di Piazza M., Vauclair S., Koch U., Ferrand G., Ferrero I., Demehri S., Song L.L., Farr A.G., Leonard W.J., Kopan R., Miele L., Hohl D., Finke D., Radtke F. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One. 2010; 5 (2): e9258. DOI: 10.1371/journal.pone.0009258.

18. Tellkamp F., Benhadou F., Bremer J., Gnarra M., Knuver J., chaffenrath S., Vorhagen S. Transgenic mouse technology in skin biology: generation of knockin mice. J. Invest. Dermatol. 2014; 134 (12): 1–3. DOI: 10.1038/jid.2014.434.

19. Zhang P., Wu M.X. A clinical review of phototherapy for psoriasis. Lasers. Med. Sci. 2018; 33 (1): 173–180. DOI: 10.1007/s10103-017-2360-1.

20. HogenEsch H., Sola M., Stearns T.M., Silva K.A., Kennedy V.E., Sundberg J.P. Angiogenesis in the skin of SHARPIN-deficient mice with chronic proliferative dermatitis. Exp. Mol. Pathol. 2016; 101 (3): 303–307. DOI: 10.1016/j.yexmp.2016.05.015.

21. Varricchi G., Granata F., Loffredo S., Genovese A., Marone G. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J. Am. Acad. Dermatol. 2015; 73 (1): 144–153. DOI: 10.1016/j.jaad.2015.03.041.

22. Wong L.S., Otsuka A., Yamamoto Y., Nonomura Y., Nakashima C., Honda T., Dainichi T., Kitoh A., Nakajima S., Hirakawa S., Miyachi Y., Kabashima K. Vascular endothelial growth factor partially induces pruritus via epidermal hyperinnervation in imiquimod-induced psoriasiform dermatitis in mice. J. Dermatol. Sci. 2016; 83 (2): 148–151. DOI: 10.1016/j.jdermsci.2016.04.008.

23. Wang X., Sun J., Hu J. IMQ Induced K14-VEGF Mouse: A Stable and Long-Term Mouse Model of Psoriasis-Like Inflammation. PLoS One. 2015; 10 (12): e0145498. DOI: 10.1371/journal.pone.0145498.

24. Cohn M. Sourcebook of Models for Biomedical Research; Springer Science & Business Media: Berlin/Heidelberg, 2008: 9–33.

25. Bocheńska K., Smolińska E., Moskot M., Jakóbkiewicz-Banecka J., Gabig-Cimińska M. Models in the Research Process of Psoriasis. Int. J. Mol. Sci. 2017; 18 (12): е2514. DOI: 10.3390/ijms18122514.

26. Gudjonsson J.E., Johnston A., Dyson M., Valdimarsson H., Elder J.T. Mouse models of psoriasis. J. Investig. Dermatol. 2007; 127 (6): 1292–1308. DOI: 10.1038/sj.jid.5700807.

27. Schon M.P. Animal models of psoriasis: A critical appraisal. Exp. Dermatol. 2008; 17 (8): 703–712. DOI: 10.1111/j.1600-0625.2008.00751.x.

28. Danilenko D.M. Review paper: Preclinical models of psoriasis. Vet. Pathol. 2008; 45 (4): 563–575. DOI: 10.1354/ vp.45-4-563.

29. Shepherd J., Little M.C., Nicklin M.J. Psoriasis-like cutaneous inflammation in mice lacking interleukin-1 receptor antagonist. J. Investig. Dermatol. 2004; 122 (3): 665–669. DOI: 10.1111/ j.0022-202X.2004.22305.х. 30. Jean J., Pouliot R. In vivo and in vitro Models of Psoriasis. Laval: Tissue Engineering, 2010: 1–26. DOI: 10.5772/8582.

30. Wang H., Peters T., Sindrilaru A., Scharffetter-Kochanek K. Key role of macrophages in the pathogenesis of cd18 hypomorphic murine model of psoriasis. J. Investig. Dermatol. 2009; 129 (5): 1100–1114. DOI: 10.1038/jid.2009.43.

31. Croxford A.L., Karbach S., Kurschus F.C., Wörtge S., Nikolaev A., Yogev N., Klebow S., Schüler R., Reissig S., Piotrowski C., Brylla E., Bechmann I., Scheller J., Rose-John S., Thomas Wunderlich F., Münzel T., von Stebut E., Waisman A. Il-6 regulates neutrophil microabscess formation in il-17a-driven psoriasiform lesions. J. Investig. Dermatol. 2014; 134 (3): 728–735. DOI: 10.1038/jid.2013.404.

32. Johnston A., Fritz Y., Dawes S.M., Diaconu D., AlAttar P.M., Guzman A.M., Chen C.S., Fu W., Gudjonsson J.E., McCormick T.S., Ward N.L. Keratinocyte overexpression of il-17c promotes psoriasiform skin inflammation. J. Immunol. 2013; 190 (5): 2252–2262. DOI: 10.4049/jimmunol.1201505.

33. Swindell W.R., Johnston A., Carbajal S., Han G., Wohn C., Lu J., Xing X., Nair R.P., Voorhees J.J., Elder J.T., Wang X.J., Sano S., Prens E.P., DiGiovanni J., Pittelkow M.R., Ward N.L., Gudjonsson J.E. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis. PLoS One. 2011; 6 (4): e18266. DOI: 10.1371/journal.pone.0018266.

34. Sferra R., Fargnoli M.C., Corbelli E., Pellegrini C., Peris K., Gaudio E., Vetuschi, A. Immunopathogenesis of psoriasis: a possible role of TGFbeta/Smads pathway. Ital. J. Anat. Embryol. 2014; 119 (3): 277–285.

35. Zenz R., Eferl R., Kenner L., Florin L., Hummerich L., Mehic D., Scheuch H., Angel P., Tschachler E., Wagner E.F. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of jun proteins. Nature. 2005; 437 (7057): 369–375. DOI: 10.1038/nature03963.

36. Jean J., Pouliot R. In vivo and in vitro models of psoriasis. London: In Tissue Engineering, 2010: 359–382.

37. Cantatore F.P., Maruotti N., Corrado A., Ribatti D. Angiogenesis dysregulation in the pathogenesis of systemic Sclerosis. Biomed Res. Int. 2017; 2017: 5345673. DOI: 10.1155/2017/5345673.

38. Varricchi G., Granata F., Loffredo S., Genovese A., Marone G. Angiogenesis and lymphangiogenesis in inflam matory skin disorders. J. Am. Acad. Dermatol. 2015; 73 (1): 144–153. DOI: 10.1016/j.jaad.2015.03.041.

39. Vaia M., Petrosino S., De Filippis D., Negro L., Guarino A., Carnuccio R., Di Marzo V., Iuvone T. Palmitoylethanolamide reduces inflammation and itch in a mouse model of contact allergic dermatitis. Eur. J. Pharmacol. 2016; 791: 669–674. DOI: 10.1016/j.ejphar.2016.10.005.

40. Furukawa F., Yoshimasu T. Animal models of spontaneous and drug-induced cutaneous lupus erythematosus. Autoimmun. Rev. 2005; 4 (6): 345–350. DOI: 10.1016/j.autrev.2005.01.006.

41. Otten J.V., Hashimoto T., Hertl M., Payne A.S., Sitaru C. Molecular diagnosis in autoimmune skin blistering conditions. Curr. Mol. Med. 2014; 14 (1): 69–95. DOI: 10.2174/15665240113136660079.

42. Miyamoto D., Sottoa M.N., Otania C.S.V., Fukumoria L.M.I., Pereiraa N.V., Santia C.G., Marutaa C.W., BurnierJrb M.N.N., Rebeisa M.M., Aokia V. Increased serum levels of vascular endothelial growth factor in pemphigus foliaceus patients with erythroderma. J. Eur. Acad. Dermatol. Venereol. 2017; 31 (2): 333–336. DOI: 10.1111/jdv.13905.

43. Amber K.T., Murrell D.F., Schmidt E., Joly P., Borradori L. Autoimmune Subepidermal Bullous Diseases of the Skin and Mucosae: Clinical Features, Diagnosis, and Management. Clin. Rev. Allergy Immunol. 2018; 54 (1): 26–51. DOI: 10.1007/s12016-017-8633-4.

44. Schulze K., Galichet A., Sayar B.S., Scothern A., Hoald D., Zymann H., Siffert M., Zenhäusern D., Bolli R., Koch P.J., Garrod D., Suter M.M., Müller E.J. An adult passive transfer mouse model to study desmoglein 3 signaling in pemphigus vulgaris. J. Invest. Dermatol. 2012; 132 (2): 346–355. DOI: 10.1038/jid.2011.299.

45. Hanakawa Y., Amagai M., Shirakata Y., Yahata Y., Tokumaru S., Yamasaki K., Tohyama M., Sayama K., Hashimoto K. Differential effects of desmoglein 1 and desmoglein 3 on desmosome formation. J. Invest. Dermatol. 2002; 119 (6): 1231–1236. DOI: 10.1046/j.1523-1747.2002.19648. x.

46. Kasperkiewicz M., Sadik C.D., Bieber K., Ibrahim S.M., Manz R.A., Schmidt E., Zillikens D., Ludwig R.J. Epidermolysis Bullosa Acquisita: From Pathophysiology to Novel Therapeutic Options. J. Invest. Dermatol. 2016; 136 (1): 24–33. DOI: 10.1038/JID.2015.356.

47. Chen M., Doostan A., Bandyopadhyay P., Remington J., Wang X., Hou Y., Liu Z., Woodley D.T. The cartilage matrix protein subdomain of type VII collagen is pathogenic for epidermolysis bullosa acquisita. Am. J. Pathol. 2007; 170 (6): 2009–2018. DOI: 10.2353/ajpath.2007.061212.

48. Natsuga K., Nishie W., Shinkuma S., Ujiie H., Nishimura M., Sawamura D., Shimizu H. Antibodies to pathogenic epitopes on type XVII collagen cause skin fragility in a complement-dependent and -independent manner. J. Immunol. 2012; 188 (11): 5792–5799. DOI: 10.4049/jimmunol.1003402.

49. Li Q., Ujiie H., Shibaki A., Wang G., Moriuchi R., Qiao H.J., Morioka H., Shinkuma S., Natsuga K., Long H.A., Nishie W., Shimizu H. Human IgG1 monoclonal antibody against human collagen 17 noncollagenous 16A domain induces blisters via complement activation in experimental bullous pemphigoid model. J. Immunol. 2010; 185 (12): 7746–7755. DOI: 10.4049/jimmunol.1000667.


Review

For citations:


Sergeeva O.N., Aksenenko M.B., Fefelova Yu.F., Sergeeva E.Yu., Ruksha T.G. Experimental models of dermatological diseases. Bulletin of Siberian Medicine. 2019;18(3):203-213. (In Russ.) https://doi.org/10.20538/1682-0363-2019-3-203-213

Views: 986


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)