Preview

Bulletin of Siberian Medicine

Advanced search

Helminths and intestinal microbiota interaction: role in the development of noncommunicable diseases

https://doi.org/10.20538/1682-0363-2019-3-214-225

Abstract

There is an increase in the prevalence of chronic, noncommunicable diseases, including allergic and autoimmune diseases in developed countries. In this regard, the study of factors modifying the population’s immune response is very important.

According to the “old friends” hypothesis , insufficiency of infectious stimulation and decrease in prevalence of helminthiasis are associated with development of noncommunicable diseases. Studies revealed that intestinal parasites modulate the host immune response and alter susceptibility to immunological diseases. It is suggested that one of the pathogenetic mechanisms of immune response modulation by parasites is an increase in the content of gastrointestinal bacteria with anti-inflammatory effect. Advanced technologies of microorganism identification provide a deep insight into the microbiota in different pathologies. The study of changes in the intestine and bile microbiota of the host in helminthiases provides new possibilities for prevention, diagnosis and control of such conditions as chronic inflammatory bowel diseases and allergic diseases. The purpose of this review is to analyze current experimental and clinical data on intestinal microbiota in helminth infections and possible association with development of chronic noncommunicable diseases. 

About the Authors

T. S. Sokolova
Siberian State Medical University (SSMU)
Russian Federation

Postgraduate student, Division of Intermediate-Level Pediatrics with a Course of Childhood Diseases,

2, Moscow Trakt, Tomsk, 634050



O. S. Fedorova
Siberian State Medical University (SSMU)
Russian Federation

DM, Head of the Division, Division of Intermediate-Level Pediatrics with a Course of Childhood Diseases,

2, Moscow Trakt, Tomsk, 634050



I. V. Saltykova
Siberian State Medical University (SSMU)
Russian Federation

PhD, Research Fellow,

2, Moscow Trakt, Tomsk, 634050



V. A. Petrov
Siberian State Medical University (SSMU)
Russian Federation

Junior Research Fellow,

2, Moscow Trakt, Tomsk, 634050



M. M. Fedotova
Siberian State Medical University (SSMU)
Russian Federation

PhD, Associate Professor, Division of Intermediate-Level Pediatrics with a Course of Childhood Diseases, 

2, Moscow Trakt, Tomsk, 634050



Yu. V. Kovshirina
Siberian State Medical University (SSMU)
Russian Federation

PhD, Associate Professor, Division of Infectious Diseases and Epidemiology, 

2, Moscow Trakt, Tomsk, 634050



I. A. Deev
Siberian State Medical University (SSMU)
Russian Federation

DM, Professor, Division of IntermediateLevel Pediatrics with a Course of Childhood Diseases,

2, Moscow Trakt, Tomsk, 634050



L. M. Ogorodova
Siberian State Medical University (SSMU)
Russian Federation

DM, Professor, Corresponding Member, Russian Academy of Sciences, Division of Intermediate-Level Pediatrics with a Course of Childhood Diseases,

2, Moscow Trakt, Tomsk, 634050



References

1. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388 (10053): 1659–1724. DOI: 10.1016/S0140-6736(16)31679-8.

2. Maizels R.M. Infections and allergy – helminths, hygiene and host immune regulation. Curr. Opin. Immunol. 2005; 17 (6): 656–661. DOI: 10.1016/j.coi.2005.09.001.

3. Maslowski K.M., Mackay C.R. Diet, gut microbiota and immune responses. Nat. Immunol. 2011; 12 (1): 5–9. DOI: 10.1038/ni0111-5.

4. Zeissig S., Blumberg R.S. Commensal microbial regulation of natural killer T cells at the frontiers of the mucosal immune system. FEBS Lett. 2014; 588 (22): 4188–4194. DOI: 10.1016/j.febslet.2014.06.042.

5. Rook G.A. Hygiene hypothesis and autoimmune diseases. Clin. Rev. Allergy Immunol. 2011 Feb.; 42 (1): 5–15. DOI: 10.1007/s12016-011-8285-8.

6. Feary J., Britton J., Leonardi-Bee J. Atopy and current intestinal parasite infection: a systematic review and meta-analysis. Allergy. 2011; 66 (4): 569–578. DOI: 10.1111/j.1398-9995.2010.02512.x.

7. Cooper P.J., Chico M.E., Rodrigues L.C., Ordonez M., Strachan D., Griffin G.E., Nutman T.B. Reduced risk of atopy among school-age children infected with geohelminth parasites in a rural area of the tropics. Allergy Clin. Immunol. 2003; 111 (5): 995–1000. PMID: 12743563.

8. Fedorova O.S., Janse J.J., Ogorodova L.M. Fedotova M.M., Achterberg R.A., Verweij J.J., Fernández-Rivas M., Versteeg S.A., Potts J., Minelli C., van Ree R., Burney P., Yazdanbakhsh M. Opisthorchis felineus negatively associates with skin test reactivity in Russia-EuroPrevall-International Cooperation Study. Allergy. 2017; 72 (7): 1096–1104. DOI: 10.1111/all.13120.

9. Leonardi-Bee J., Pritchard D., Britton J. Asthma and current intestinal parasite infection: systematic review and meta-analysis. Am. J. Respir. Crit. Care Med. 2006; 174 (5): 514–523. DOI: 10.1164/rccm.200603-331.

10. Maizels R.M., Yazdanbakhsh M. Immune Regulation by helminth parasites: cellular and molecular mechanisms. Nat. Rev. Immunol. 2003; 3 (9): 733–744. DOI: 10.1038/nri1183.

11. Ogorodova L.M., Frejdin M.B., Sazonov A.E., Fedorova O.S., Deev I.A., Kremer E.E. Opistorchis felineus invasion influence on immunity in bronchial asthma. Bulletin of Siberian Medicine. 2010; 9 (3): 85–90 (in Russ.).

12. Eliseeva O.V., Kremer E.E., Ogorodova L.M., Fedorova O.S., Deev I.A. Cellular immune response in children suffering from bronchial asthma in combination with chronic opisthorchiasis invasion. Voprosy Diagnostiki v Pediatrii. 2011; 3 (2): 15–19 (in Russ.).

13. Round J., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA. 2010; 107 (27): 12204–12209. DOI: 10.1073/pnas.0909122107.

14. Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G., Yamasaki S., Saito T., Ohba Y., Taniguchi T., Takeda K., Hori S., Ivanov I.I., Umesaki Y., Itoh K., Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011; 331 (6015): 337–341. DOI: 10.1126/science.1198469.

15. O’Hara A.M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006; 7: 688–693. DOI: 10.1038/sj.embor.7400731.

16. Weinstock J.V., Elliott D.E. Helminths and the IBD hygiene hypothesis. Inflamm. Bowel Dis. 2009; 15 (1): 128– 133. DOI: 10.1002/ibd.20633.

17. Zuo T., Kamm M.A., Colombel J.F., Ng S.C. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2018; 15 (7): 440–452. DOI: 10.1038/s41575-018-0003-z.

18. Soon I.S., Molodecky N.A., Rabi D.M., Ghali W.A., Barkema H.W., Kaplan G.G. The relationship between urban environment and the inflammatory bowel diseases: a systematic review and meta-analysis. BMC Gastroenterol. 2012; 12: 51. DOI: 10.1186/1471-230X-12-51.

19. Zoetendal E.G., Puylaert P.G.B., Ou J., Vipperla K., Brouard F.M., Ruder E.H., Newton K., Carbonero F., Gaskins H.R., Vos W.M. de, O’Keefe S.J. Distinct microbiotas are present in urban and rural native South Africans, and in African Americans. Gastroenterology. 2013; 144 (5): S347. DOI: 10.1016/S0016-5085(13)61277-9.

20. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010; 107 (33): 14691–14696. DOI: 10.1073/pnas.1005963107.

21. Galvez J., Rodríguez-Cabezas M.E., Zarzuelo A. Effects of dietary fiber on inflammatory bowel disease. Mol. Nutr. Food Res. 2005; 49 (6): 601–608. DOI: 10.1002/ mnfr.200500013.

22. Pituch-Zdanowska A., Banaszkiewicz A., Albrecht P. The role of dietary fibre in inflammatory bowel disease. Prz. Gastroenterol. 2015; 10 (3): 135–141. DOI: 10.5114/pg.2015.52753.

23. Hou J.K., Abraham B., El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am. J. Gastroenterol. 2011 Apr.; 106 (4): 563–573. DOI: 10.1038/ajg.2011.44.

24. Swidsinski A., Ladhoff A., Pernthaler A., Swidsinski S., Loening-Baucke V., Ortner M., Weber J., Hoffmann U., Schreiber S., Dietel M., Lochs H. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002; 122 (1): 44–54.

25. Frank D.N., St Amand A.L., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA. 2007; 104 (34): 13780–13785.

26. Strauss J., Kaplan G.G., Beck P.L., Rioux K., Panaccione R., Devinney R., Lynch T., Allen-Vercoe E. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis. 2011; 17 (9): 1971–1978. DOI: 10.1002/ibd.21606.

27. Nadal I., Donat E., Ribes-Koninckx C., Calabuig M., Sanz Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J. Med. Microbiol. 2007; 56 (Pt 12): 1669–1674. DOI: 10.1099/jmm.0.47410-0.

28. Sanchez E., Laparra J., Sanz Y. Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. App. аnd Environ. Microbiol. 2012; 78: 6507–6515. DOI: 10.1128/AEM.00563-12.

29. Matsuoka K., Hibi T. Treatment guidelines in inflammatory bowel disease: the Japanese perspectives. Dig. Dis. 2013; 31 (3-4): 363–367. DOI: 10.1159/000354696.

30. Manichanh C., Borruel N., Casellas F., Guarner F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 2012 Oct.; 9 (10): 599–608. DOI: 10.1038/nrgastro.2012.152.

31. Kostic A.D., Chun E., Robertson L. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013 Aug. 14; 14 (2): 207–215. DOI: 10.1016/j.chom.2013.07.007.

32. Shukla S.D., Budden K.F., Neal R., Hansbro P.M. Microbiome effects on immunity, health and disease in the lung. Clin. Transl. Immunology. 2017; 6 (3): e133. DOI: 10.1038/cti.2017.6.

33. Petrov V.A., Alifirova V.M., Saltykova I.V., Zhukova I.A., Zhukova N.G., Dorofeeva Y.B., Tyakht A.V., Altukhov I.A., Kostryukova E.S., Titova M.A., Mironova Y.S., Izhboldina O.P., Nikitina M.A., Perevozchikova T.V., Fait E.A., Sazonov A.E. Comparison study of gut microbiota in case of Parkinson’s disease and other neurological disorders. Bulletin of Siberian Medicine. 2016; 15 (5): 113–125 (in Russ.). DOI: 10.20538/1682-0363-2016-5-113-125.

34. Herbst T., Sichelstiel A., Schär C., Yadava K., Bürki K., Cahenzli J., McCoy K., Marsland B.J., Harris N.L. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit. Care Med. 2011; 184 (2): 198–205. DOI: 10.1164/rccm.201010-1574OC.

35. Summers R.W., Elliott D.E., Urban J.F., Thompson Jr., Weinstock J.V. Trichuris suis therapy in Crohn’s disease. Gut. 2005; 54 (1): 87–90. DOI: 10.1136/gut.2004.041749.

36. Croese J., Giacomin P., Navarro S., Clouston A., McCann L., Dougall A., Ferreira I., Susianto A., O’Rourke P., Howlett M., McCarthy J., Engwerda C., Jones D., Loukas A. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J. Allergy Clin. Immunol. 2015; 135 (2): 508–516. DOI: 10.1016/j.jaci.2014.07.022.

37. Reynolds L.A., Smith K.A., Filbey K.J., Harcus Y., Hewitson J.P., Redpath S.A., Valdez Y., Yebra M.J., Finlay B.B., Maizels R.M. Commensal-pathogen interactions in the intestinal tract: Lactobacilli promote infection with, and are promoted by, helminth parasites. Gut. Microbes. 2014; 5 (4): 522–532. DOI: 10.4161/gmic.32155.

38. Walk S.T., Blum A.M., Ewing S.A., Weinstock J.V., Young V.B. Alteration of the murine gut microbiota during infection with the parasitic helminth, Heligmosomoides polygyrus. Inflamm. Bowel Dis. 2010; 16 (11): 1841–1849. DOI: 10.1002/ibd.21299.

39. Brosschot T.P., Reynolds L.A. The impact of a helminthmodified microbiome on host immunity. Mucosal. Immunol. 2018; 11 (4): 1039–1046. DOI: 10.1038/s41385-018-0008-5.

40. Grainger J.R., Smith K.A., Hewitson J.P., McSorley H.J., Harcus Y., Filbey K.J., Finney C.A., Greenwood E.J., Knox D.P., Wilson M.S., Belkaid Y., Rudensky A.Y., Maizels R.M. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J. Exp. Med. 2010; 207 (11): 2331–2341. DOI: 10.1084/jem.20101074.

41. Holm J.B., Sorobetea D., Kiilerich P., Ramayo-Caldas Y., Estellé J., Ma T., Madsen L., Kristiansen K., Svensson-Frej M. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli. PLoS One. 2015; 10 (5): e0125495. DOI: 10.1371/journal.pone.0125495.

42. Li R.W., Wu S., Li W., Navarro K., Couch R.D., Hill D., Urban J. Jr. Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infect Immun. 2012; 80 (6): 2150–2057. DOI: 10.1128/IAI.00141-12.

43. Wu S., Li R.W., Li W., Beshah E., Dawson H.D., Urban J.F.r. Worm burden-dependent disruption of the porcine colon microbiota by Trichuris suis infection. PLoS One. 2012; 7 (4): e35470. DOI: 10.1371/journal. pone.0035470.

44. Cooper P., Walker A.W., Reyes J., Chico M., Salter S.J., Vaca M., Parkhill J. Patent human infections with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota. PLoS One. 2013; 8 (10): e76573. DOI: 10.1371/journal.pone.0076573.

45. Lee S.C., Tang M.S., Lim Y.A., Choy S.H., Kurtz Z.D., Cox L.M., Gundra U.M., Cho I., Bonneau R., Blaser M.J., Chua K.H., Loke P. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 2014; 8 (5): e2880. DOI: 10.1371/journal.pntd.0002880.

46. Plieskatt J.L., Deenonpoe R., Mulvenna J.P., Krause L., Sripa B., Bethony J.M., Brindley P.J. Infection with the carcinogenic liver fluke Opisthorchis viverrini modifies intestinal and biliary microbiome. FASEB J. 2013; 27 (11): 4572–04584. DOI: 10.1096/fj.13-232751.

47. Deenonpoe R., Chomvarin C., Pairojkul C., Chamgramol Y., Loukas A., Brindley P.J., Sripa B. The Carcinogenic liver fluke Opisthorchis viverrini is a reservoir for species of Helicobacter. Asian Pac. J. Cancer Prev. 2015; 16 (5): 1751–1758. PMCID: PMC4945248.

48. Saltykova I.V., Petrov V.A., Logacheva M.D., Ivanova P.G., Merzlikin N.V., Sazonov A.E., Ogorodova L.M., Brindley P.J. Biliary microbiota, gallstone disease and infection with Opisthorchis felineus. PLoS Negl. Trop. Dis. 2016; 10 (7): e0004809. DOI: 10.1371/journal.pntd.0004809.

49. Chng K.R., Chan S.H., Ng A.H.Q., Li C., Jusakul A., Bertrand D., Wilm A., Choo S.P., Tan D.M.Y., Lim K.H., Soetinko R., Ong C.K., Duda D.G., Dima S., Popescu I., Wongkham C., Feng Z., Yeoh K.G., Teh B.T., Yongvanit P., Wongkham S., Bhudhisawasdi V., Khuntikeo N., Tan P., Pairojkul C., Ngeow J., Nagarajan N. Tissue microbiome profiling identifies an enrichment of specific enteric bacteria in Opisthorchis viverrini associated cholangiocarcinoma. EBio Medicine. 2016; 8: 195–202. DOI: 10.1016/j.ebiom.2016.04.034.

50. Glinskaja O.N. Clinical and functional state of the stomach and small intestine in patients with chronic inflammatory diseases of the bowel in combination with chronic opisthorchiasis [dissertation]. Tomsk, 2007. 216. (in Russ.).

51. Svetlova I.O., Valujskih E.Ju. Effect of Opisthorchis felineus invasion on clinical manifestations of inflammatory bowel diseases. Bjulleten’ SO RAMN. 2009; 3 (137): 76–80 (in Russ.).

52. Matsukura N., Yokomuro S., Yamada S., Tajiri T., Sundo T., Hadama T., Kamiya S., Naito Z., Fox J.G. Association between Helicobacter bilis in bile and biliary tract malignancies: H. bilis in bile from Japanese and Thai patients with benign and malignant diseases in the biliary tract. Jpn. J. Cancer Res. 2002; 93 (7): 842–847. PMCID: PMC5927065.

53. Sripa B., Brindley P.J., Mulvenna J., Laha T., Smout M.J., Mairiang E., Bethony J.M., Loukas A. The tumorigenic liver fluke Opisthorchis viverrini – multiple pathways to cancer. Trends Parasitol. 2012; 28 (10): 395–407. DOI: 10.1016/j.pt.2012.07.006.

54. Pakharukova M.Y., Laha T., Sripa B., Maksimova G.A., Rinaldi G., Brindley P.J., Mordvinov V.A., Amaro T., Santos L.L., Costa J.M., Vale N. Infection with Opisthorchis felineus induces intraepithelial neoplasia of the biliary tract in a rodent model. Carcinogenesis. 2017; 38 (9): 929–937. DOI: 10.1093/carcin/bgx042.

55. Сroese J., O’Neil J., Masson J., Cooke S., Melrose W., Pritchard D., Speare R. A proof of concept study establishing Necator americanus in Crohn’s patients and reservoir donors. Gut. 2006; 55: 136–137. DOI: 10.1136/gut.2005.079129.

56. Wammes L.J., Mpairwe H., Elliott A.M., Yazdanbakhsh M. Helminth therapy or elimination: epidemiological, immunological, and clinical considerations. Lancet Infect Dis. 2014; 14 (11): 1150–1162. DOI: 10.1016/S1473- 3099(14)70771-6.

57. Fleming J.O., Isaak A., Lee J.E., Luzzio C.C., Carrithers M.D., Cook T.D., Field A.S., Boland J., Fabry Z. Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Mult. Scler. 2011; 17 (6): 743–754. DOI: 10.1177/1352458511398054.

58. Bager P., Arnved J., Ronborg S., Wohlfahrt J., Poulsen L.K., Westergaard T., Petersen H.W., Kristensen B., Thamsborg S., Roepstorff A., Kapel C., Melbye M. Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J. Allergy Clin. Immunol. 2010; 125 (1): 123–130. e1–3. DOI: 10.1016/j.jaci.2009.08.006.

59. Feary J.R., Venn A.J., Mortimer K., Brown A.P., Hooi D., Falcone F.H., Pritchard D.I., Britton J.R. Experimental hookworm infection: a randomized placebo-controlled trial in asthma. Clin. Exp. Allergy. 2010; 40 (2): 299– 306. DOI: 10.1111/j.1365-2222.2009.03433.x.

60. Zaiss M.M., Rapin A., Lebon L., Dubey L.K., Mosconi I., Sarter K., Piersigilli A., Menin L., Walker A.W., Rougemont J., Paerewijck O., Geldhof P., McCoy K.D., Macpherson A.J., Croese J., Giacomin P.R., Loukas A., Junt T., Marsland B.J., Harris N.L. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity. 2015; 43 (5): 998–1010. DOI: 10.1016/j.immuni.2015.09.012.


Review

For citations:


Sokolova T.S., Fedorova O.S., Saltykova I.V., Petrov V.A., Fedotova M.M., Kovshirina Yu.V., Deev I.A., Ogorodova L.M. Helminths and intestinal microbiota interaction: role in the development of noncommunicable diseases. Bulletin of Siberian Medicine. 2019;18(3):214-225. (In Russ.) https://doi.org/10.20538/1682-0363-2019-3-214-225

Views: 1558


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)