Preview

Bulletin of Siberian Medicine

Advanced search

Modeling of chronic epilepsy in animals through chemical methods

https://doi.org/10.20538/1682-0363-2019-4-185-196

Abstract

According to the World Health Organization, the prevalence of epilepsy in the world is high, at about 0.5–1% of the world’s population. In 20–40% of cases, according to various sources, it is not possible with standard treatment methods to achieve control over attacks, which significantly impairs the patient’s quality of life, increases economic costs, and poses a difficult task for the doctor to select the optimal treatment to reduce the frequency of attacks. This explains the urgency of creating new and modifying classical antiepileptic drugs (AEDs), as well as finding optimal and safe ways of administering and delivering the drugs. To study the mechanisms of AEDs’ effect on various pathways of epileptogenesis, simulation of convulsive seizures and chronic epilepsy in animals is used; for this purpose, mechanical, physical, chemical, and genetic models of epilepsy are used. The present review discusses chemical models of chronic epilepsy, which are most often used in experimental neuroscience today. It also describes the characteristics, advantages and disadvantages of each of them, the specificity of the study where they can be used and the assessment scales for epileptic seizures in animals.

About the Authors

E. V. Egorova
Voyno-Yasenetsky Krasnoyarsk State Medical University (Voyno-Yasenetsky KrasSMU)
Russian Federation

Post-Graduate student, Department of Medical Genetics and Clinical Neurophysiology, Institute of Post-Graduate Education,

1, P. Zheleznyaka Str., Krasnoyarsk, 660022



D. V. Dmitrenko
Voyno-Yasenetsky Krasnoyarsk State Medical University (Voyno-Yasenetsky KrasSMU)
Russian Federation

DM, Assistant Professor, Head of the Department of Medical Genetics and Clinical Neurophysiology, Institute of Post-Graduate Education, 

Director of the Neurological Center for Epileptology, Neurogenetics and Brain Research of the University Clinic, 

1, P. Zheleznyaka Str., Krasnoyarsk, 660022



A. A. Usoltseva
Voyno-Yasenetsky Krasnoyarsk State Medical University (Voyno-Yasenetsky KrasSMU)
Russian Federation

Student,

1, P. Zheleznyaka Str., Krasnoyarsk, 660022



A. M. Iptyshev
Voyno-Yasenetsky Krasnoyarsk State Medical University (Voyno-Yasenetsky KrasSMU)
Russian Federation

Student,

1, P. Zheleznyaka Str., Krasnoyarsk, 660022



N. A. Shnayder
Bekhterev National Medical Research Center (NMRC) of Psychiatry and Neurology
Russian Federation

DM, Professor, Leading Researcher, Department of Personalized Psychiatry and Neurology,

3, Bekhterev Str., St.-Petersburg, 192019



R. F. Nasyrova
Bekhterev National Medical Research Center (NMRC) of Psychiatry and Neurology
Russian Federation

DM, Principle Researcher, Scientific Supervisor, Department of Personalized Psychiatry and Neurology, 

3, Bekhterev Str., St.-Petersburg, 192019



References

1. Fisher R.S., Acevedo C., Arzimanoglou A. et al. ILAE оfficial report: a practical clinical definition of epilepsy. Epilepsia. 2014; 55 (4): 475–482. DOI: 10.1111/epi.12550.

2. Hamada N.M., Ashour R.H., Shalaby A.A., El-Beltagi H.M. Calcitonin potentiates the anticonvulsant and antinociceptive effects of valproic pentylenetetrazole-kindled mice. European Journal of Pharmacology. 2018; 818: 351–355. DOI: 10.1016/ejphar.2017.11.003.

3. Narodova E.A., Shnayder N.A., Prokopenko S.V., Narodova V.V., Narodov A.A., Dmitrenko D.V. Epidemiology of drug resistant epilepsy in adults. Bulletin of Siberian Medicine. 2018; 17 (3): 207–216 (in Russ.). DOI: 10.20538/1682-0363-2018-3-207-216.

4. Nasyrova R.F., Sivakova N.A., Lipatova L.V., Ivashchenko D.V., Sosina K.A., Drokov A.P., Shnayder N.A. Biological markers of the efficacy and safety of antiepileptic drugs: pharmacogenetics and pharmacokinetics. Siberian Medical Review. 2017; 1 (103): 17–25 (in Russ.). DOI: 10.20333/2500136-2017-1-17-25.

5. Kalinina D.S., Ganina O.R., Volnova A.B., Zhuravin I.A. Brain pathology conditions: research of epilepsy in animal models. Health – the Basis of Human Potential: Problems and Ways to Solve Them. 2014; 9 (1): 127–129 (in Russ.).

6. Malyshev S.M., Alekseeva T.M., Khachatryan V.A., Galagudza M.M. Non-genetic in vivo experimental models of epilepsy and vagus nerve stimulation. Translational Medicine. 2018; 5 (3): 36-44 (in Russ.). DOI: 10.18705/2311-4495-2018-5-3-36-44.

7. Kashapov F.F. Models of epileptiform activity in vivo. Apriori. 2018; 1: 6 (in Russ.).

8. Kumar A., Sharma N., Bhardwaj M., Singh S. A review on chemical induced kindling models of epilepsy. Journal of Veterinary Medicine and Research. 2016; 3 (3): 1050.

9. Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Current Protocols in Neuroscience. 2012; Chapter 9: Unit 9.37. DOI: 10.1002/0471142301.ns0937s58.

10. ErgьlErkeз Ц., ArIhan O. Pentylenetetrazole kindling epilepsy model. Journal of the Turkish Chapter of ILAE. 2015; 21 (1): 6–12: DOI: 10.5505/epilepsi.2015.08108.

11. Akdogan I., Yonguc N.G. Experimental epilepsy models and morphologic alterations of experimental epilepsy models in brain and hippocampus. In: Underlying Mechanisms of Epilepsy. 2011; 269–282. DOI: 10.5772/19928.

12. Postnikova T.Y., Zubareva O.E., Kovalenko A.A., Kim K.K., Magazanik L.G., Zaitsev A.V. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochemistry. 2017; 82 (3): 418–428 (in Russ.).

13. Bartlett T.E., Bannister N.J., Collett V.J., Dargan S.L., Massey P.V., Bortolotto Z.A., Fitzjohn S.M., Bashir Z.I., Collingridge G.L., Lodge D. Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology. 2007; 52 (1): 60–70. DOI: 10.1016/j.neuropharm.2006.07.013.

14. Klioueva I.A., van Luijtelaar E.L., Chepurnova N.E., Chepurnov S.A. PTZ-induced seizures in rats: effects of age and strain. Physiol. Behav. 2001; 72 (3): 421–426. DOI: 10.1016/s0031-9384(00)00425-x.

15. Lцscher W., Hцnack D., Fassbender C.P. et al. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylenetetrazole seizure models. Epilepsy Res. 1991; 8 (3): 171–189. DOI: 10.1016/0920-1211(91)90062-k.

16. Chaisewikul R., Baillie N., Marson A.G. Calcium antagonists as an addon therapy for drug-resistant epilepsy. Cochrane Database Syst. Rev. 2001; (4). DOI: 10.1002/14651858.CD002750.

17. Shimada T., Yamagata K. Pentylenetetrazole-induced kindling mouse model. J. Visualized Experiments. 2018; 136: e56573. DOI: 10.3791/56573 (2018).

18. Mьller C.J., Bankstahl M., Grцticke I., Lцscher W. Pilocarpine vs. lithium-pilocarpine for induction of status epilepticus in mice: development of spontaneous seizures, behavioral alterations and neuronal damage. Eur. J. Pharmacol. 2009; 619 (1–3): 15–24. DOI: 10.1016/j.ejphar.2009.07.020.

19. Hong N., Choi Y.S., Kim S.Y., Kim H.J. Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice. Korean J. Physiol. Pharmacol. 2017; 21 (1): 125–131. DOI: 10.4196/kjpp.2017.21.1.125.

20. Kovalev I.G., Voronina T.A., Litvinova S.A., Zhmurenko L.A., Mokrov G.V. Comparison of the anticonvulsant and mnemotropic properties of new derivatives of 4-phenylpyrrolidone, levetiracetam, and piracetam. Russian Journal of Experimental and Clinical Pharmacology. 2017; 80 (6): 13–18. (in Russ.). DOI: 10.30906/0869-2092-2017-80-6-13-18.

21. Furtado M. A., Braga G.K., Oliveira J.A., Del Vecchio F., Garcia-Cairasco N. Behavioral, morphologic, and electroencephalographic evaluation of seizures induced by intrahippocampal microinjection of pilocarpine. Epilepsia. 2002; 43 (5): 37–39. DOI:10.1046/j.1528-1157.43.s.5.41.x.

22. Lйvesque M., Avoli M., Bernard C. Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J. Neurosci. Methods. 2016; 260: 45–52. DOI: 10.1016/j.jneumeth.2015.03.009.

23. Hellier J.L., Patrylo P.R., Buckmaster P.S., Dudek F.E. Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res. 1998; 31 (1): 73–84. DOI:10.1016/s0920-1211(98)00017-5.

24. Leite J.P., Garcia-Cairasco N., Cavalheiro E.A. New insights from the use of pilocarpine and kainate models. Epilepsy Res. 2002; 50 (1–2): 93–103. DOI: 10.1016/s0920-1211(02)00072-4.

25. Racine R., Okujava V., Chipashvili S. Modification of seizure activity by electrical stimulation. III. Mechanisms. Electroencephalogr. Clin. Neurophysiol. 1972; 32 (3): 295–299. DOI: 10.1016/0013-4694(72)90178-2.

26. McIntyre D.C., Poulter M.O., Gilby K. Kindling: Some old and some new. Epilepsy Res. 2002; 50 (1–2): 79–92. DOI: 10.1016/s0920-1211(02)00071-2.

27. Loskota W.J., Lomax P., Rich S.T. The gerbil as a model for the study of the epilepsies. Seizure patterns and ontogenesis. Epilepsia. 1974; 15 (1): 109–119. DOI: 10.1111/j.1528-1157.1974.tb04000.x.

28. Jobe P.C., Picchioni A.L., Chin A. Role of brain norepinephrine in audiogenic seizure in the rat. J. Pharmacol. Exp. Ther. 1973; 184 (1): 1–10.

29. Garcia-Cairasco N., Doretto M.C., Prado P., Jorge B.P.D., Terra V.C., Oliveira J.A. New insights into behavioral evaluation of audiogenic seizures. A comparison of two ethological methods. Behav. Brain Res. 1992; 48 (1): 49–56. DOI: 10.1016/s0166-4328(05)80138-x. 30. Phelan K.D., Shwe U.T., Williams D.K., Greenfield L.J., Zheng F. Pilocarpine-induced status epilepticus in mice: a comparison of spectral analysis of electroencephalogram and behavioral grading using the Racine scale. Epilepsy Res. 2015; 117: 90–96. DOI: 10.1016/j.eplepsyres.2015.09.008.

30. Lцscher W., Schmidt D. Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res. 1988; 2 (3): 145–181. DOI: 10.1016/0920-1211(88)90054-x.

31. Lьttjohann A., Fabene P.F., van Luijtelaar G. A revised Racine’s scale for PTZ-induced seizures in rats. Physiol. Behav. 2009; 98 (5): 579–586. DOI: 10.1016/j.physbeh.2009.09.005.

32. Fischer W., Kittner H. Influence of ethanol on the pentylenetetrazol-induced kindling in rats. J. Neural. Transm. 1998; 105 (10–12): 1129–1142. DOI: 10.1007/s007020050117.


Review

For citations:


Egorova E.V., Dmitrenko D.V., Usoltseva A.A., Iptyshev A.M., Shnayder N.A., Nasyrova R.F. Modeling of chronic epilepsy in animals through chemical methods. Bulletin of Siberian Medicine. 2019;18(4):185-196. (In Russ.) https://doi.org/10.20538/1682-0363-2019-4-185-196

Views: 965


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)