1. Fisher R.S., Acevedo C., Arzimanoglou A. et al. ILAE оfficial report: a practical clinical definition of epilepsy. Epilepsia. 2014; 55 (4): 475-482. https://doi.org/10.1111/epi.12550.
2. Hamada N.M., Ashour R.H., Shalaby A.A., El-Beltagi H.M. Calcitonin potentiates the anticonvulsant and antinociceptive effects of valproic pentylenetetrazole-kindled mice. European Journal of Pharmacology. 2018; 818: 351-355. https://doi.org/10.1016/ejphar.2017.11.003.
3. Народова Е.А., Шнайдер Н.А., Прокопенко С.В., Народова В.В., Народов А.А., Дмитренко Д.В. Эпидемиология фармакорезистентной эпилепсии у взрослых. Бюллетень сибирской медицины. 2018; 17 (3): 207-216. https://doi.org/10.20538/1682-0363-2018-3-207-216.
4. Насырова Р.Ф., Сивакова Н.А., Липатова Л.В., Иващенко Д.В., Сосина К.А., Дроков А.П., Шнайдер Н.А. Биологические маркеры эффективности и безопасности противоэпилептических препаратов: фармакогенетика и фармакокинетика. Сибирское медицинское обозрение. 2017; 1 (103): 17-25. https://doi.org/10.20333/2500136-2017-1-17-25.
5. Калинина Д.С., Ганина О.Р., Вольнова А.Б., Журавин И.А. Патологические состояния мозга: использование животных моделей для исследования эпилепсии. Здоровье - основа человеческого потенциала: проблемы и пути их решения. 2014; 9 (1): 127-129.
6. Малышев С.М., Алексеева Т.М., Хачатрян В.А., Галагудза М.М. Негенетические экспериментальные модели эпилепсии in vivo и стимуляция блуждающего нерва. Онкология. Трансляционная медицина. 2018; 5 (3): 36-44. https://doi.org/10.18705/2311-4495-2018-5-3-36-44.
7. Кашапов Ф.Ф. Модели эпилептиформной активности in vivo. Apriori. 2018; 1: 6.
8. Kumar A., Sharma N., Bhardwaj M., Singh S. A review on chemical induced kindling models of epilepsy. Journal of Veterinary Medicine and Research. 2016; 3 (3): 1050.
9. Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Current Protocols in Neuroscience. 2012; Chapter 9: Unit 9.37. https://doi.org/10.1002/0471142301.ns0937s58.
10. ErgьlErkeз Ц., ArIhan O. Pentylenetetrazole kindling epilepsy model. Journal of the Turkish Chapter of ILAE. 2015; 21 (1): 6-12: https://doi.org/10.5505/epilepsi.2015.08108.
11. Akdogan I., Yonguc N.G. Experimental epilepsy models and morphologic alterations of experimental epilepsy models in brain and hippocampus. In: Underlying Mechanisms of Epilepsy. 2011; 269-282. https://doi.org/10.5772/19928.
12. Постникова Т.Ю., Зубарева О.Е., Коваленко А.А., Ким К.Х., Магазаник Л.Г., Зайцев А.В. Эпилептический статус вызывает нарушения синаптической пластичности в гиппокампе крыс, сопровождающиеся изменением уровня экспрессии NMDA-рецепторов. Биохимия. 2017; 82 (3): 418-428.
13. Bartlett T.E., Bannister N.J., Collett V.J., Dargan S.L., Massey P.V., Bortolotto Z.A., Fitzjohn S.M., Bashir Z.I., Collingridge G.L., Lodge D. Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology. 2007; 52 (1): 60-70. https://doi.org/10.1016/j.neuropharm.2006.07.013.
14. Klioueva I.A., van Luijtelaar E.L., Chepurnova N.E., Chepurnov S.A. PTZ-induced seizures in rats: effects of age and strain. Physiol. Behav. 2001; 72 (3): 421-426. https://doi.org/10.1016/s0031-9384(00)00425-x.
15. Lцscher W., Hцnack D., Fassbender C.P. et al. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylenetetrazole seizure models. Epilepsy Res. 1991; 8 (3): 171-189. https://doi.org/10.1016/0920-1211(91)90062-k.
16. Chaisewikul R., Baillie N., Marson A.G. Calcium antagonists as an addon therapy for drug-resistant epilepsy. Cochrane Database Syst. Rev. 2001; (4). https://doi.org/10.1002/14651858.CD002750.
17. Shimada T., Yamagata K. Pentylenetetrazole-induced kindling mouse model. J. Visualized Experiments. 2018; 136: e56573. https://doi.org/10.3791/56573 (2018).
18. Mьller C.J., Bankstahl M., Grцticke I., Lцscher W. Pilocarpine vs. lithium-pilocarpine for induction of status epilepticus in mice: development of spontaneous seizures, behavioral alterations and neuronal damage. Eur. J. Pharmacol. 2009; 619 (1-3): 15-24. https://doi.org/10.1016/j.ejphar.2009.07.020.
19. Hong N., Choi Y.S., Kim S.Y., Kim H.J. Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice. Korean J. Physiol. Pharmacol. 2017; 21 (1): 125-131. https://doi.org/10.4196/kjpp.2017.21.1.125.
20. Ковалев И.Г., Воронина Т.А., Литвинова С.А., Жмуренко Л.А., Мокров Г.В. Сравнение противосудорожных и мнемотропных свойств новых производных 4-фенилпирролидона, леветирацетама и пирацетама. Экспериментальная и клиническая фармакология. 2017; 80 (6): 13-18. https://doi.org/10.30906/0869-2092-2017-80-6-13-18.
21. Furtado M. A., Braga G.K., Oliveira J.A., Del Vecchio F., Garcia-Cairasco N. Behavioral, morphologic, and electroencephalographic evaluation of seizures induced by intrahippocampal microinjection of pilocarpine. Epilepsia. 2002; 43 (5): 37-39. https://doi.org/10.1046/j.1528-1157.43.s.5.41.x.
22. Lйvesque M., Avoli M., Bernard C. Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J. Neurosci. Methods. 2016; 260: 45-52. https://doi.org/10.1016/j.jneumeth.2015.03.009.
23. Hellier J.L., Patrylo P.R., Buckmaster P.S., Dudek F.E. Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res. 1998; 31 (1): 73-84. https://doi.org/10.1016/s0920-1211(98)00017-5.
24. Leite J.P., Garcia-Cairasco N., Cavalheiro E.A. New insights from the use of pilocarpine and kainate models. Epilepsy Res. 2002; 50 (1-2): 93-103. https://doi.org/10.1016/s0920-1211(02)00072-4.
25. Racine R., Okujava V., Chipashvili S. Modification of seizure activity by electrical stimulation. III. Mechanisms. Electroencephalogr. Clin. Neurophysiol. 1972; 32 (3): 295-299. https://doi.org/10.1016/0013-4694(72)90178-2.
26. McIntyre D.C., Poulter M.O., Gilby K. Kindling: Some old and some new. Epilepsy Res. 2002; 50 (1-2): 79-92. https://doi.org/10.1016/s0920-1211(02)00071-2.
27. Loskota W.J., Lomax P., Rich S.T. The gerbil as a model for the study of the epilepsies. Seizure patterns and ontogenesis. Epilepsia. 1974; 15 (1): 109-119. https://doi.org/10.1111/j.1528-1157.1974.tb04000.x.
28. Jobe P.C., Picchioni A.L., Chin A. Role of brain norepinephrine in audiogenic seizure in the rat. J. Pharmacol. Exp. Ther. 1973; 184 (1): 1-10.
29. Garcia-Cairasco N., Doretto M.C., Prado P., Jorge B.P.D., Terra V.C., Oliveira J.A. New insights into behavioral evaluation of audiogenic seizures. A comparison of two ethological methods. Behav. Brain Res. 1992; 48 (1): 49-56. https://doi.org/10.1016/s0166-4328(05)80138-x. 30. Phelan K.D., Shwe U.T., Williams D.K., Greenfield L.J., Zheng F. Pilocarpine-induced status epilepticus in mice: a comparison of spectral analysis of electroencephalogram and behavioral grading using the Racine scale. Epilepsy Res. 2015; 117: 90-96. https://doi.org/10.1016/j.eplepsyres.2015.09.008.
30. Lцscher W., Schmidt D. Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res. 1988; 2 (3): 145-181. https://doi.org/10.1016/0920-1211(88)90054-x.
31. Lьttjohann A., Fabene P.F., van Luijtelaar G. A revised Racine’s scale for PTZ-induced seizures in rats. Physiol. Behav. 2009; 98 (5): 579-586. https://doi.org/10.1016/j.physbeh.2009.09.005.
32. Fischer W., Kittner H. Influence of ethanol on the pentylenetetrazol-induced kindling in rats. J. Neural. Transm. 1998; 105 (10-12): 1129-1142. https://doi.org/10.1007/s007020050117.