Preview

Bulletin of Siberian Medicine

Advanced search

Amino acids and acylcarnitines as potential metabolomic markers of schizophrenia: new approaches to diagnostics and therapy

https://doi.org/10.20538/1682-0363-2019-4-197-208

Abstract

Background. Schizophrenia is a socially significant mental illness with insufficiently studied etiology and pathogenesis. A number of hypotheses of schizophrenia pathogenesis (dopamine, glutamate, kinurenin and serotonin hypotheses) bring together the fact that amino acids are precursors or intermediate metabolic products of these metabolites. Amino acids and their metabolites play an important role as significant substrates and regulators in many metabolic pathways.

The aim of this review is to analyze the literature data on the studies of amino acids and acylcarnitines in patients with schizophrenia.

Methods. A literature search was conducted using PubMed databases for articles published in English and covering the period from the first articles on this topic, dated 1977 to April 2019. Combinations of the following keywords were used to search for “schizophrenia”, “antipsychotics” and “amino acids”, “acylcarnitines”, “metabolomics”.

Results. The review summarizes the data on the content of amino acids and acylcarnitines in the peripheral blood of schizophrenia patients and their dynamics in the course of pharmacotherapy with antipsychotic drugs. The potential of determining amino acids as biomarkers of therapeutic response and side effects, as well as their use in the treatment of patients with schizophrenia, are considered.

Conclusion. Further investigation of the spectrum of amino acids and their metabolites with the using of mass spectrometric methods of metabolic analysis can lead to the discovery of new therapeutic targets and strategies, assess their role in the pathophysiology of schizophrenia, identify mechanisms that ensure the development of antipsychotic antipsychotics, and drug-induced side effects antipsychotics, in particular, metabolic syndrome. 

About the Authors

I. A. Mednova
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

Junior Researcher, Molecular Genetics and Biochemistry Laboratory,

4, Aleutskaya Str., Tomsk, 634014



V. Yu. Serebrov
Siberian State Medical University (SSMU); National Research Tomsk Polytechnic University (NR TPU)
Russian Federation

DM, Professor, Head of the Biochemistry and Molecular Biology with a Course of Clinical Laboratory Diagnosis Department, 2, Moscow Trakt, Tomsk, 634050;

Professor, Biotechnology and Organic Chemistry Department, 30, Lenina Av., Tomsk, 634050



A. N. Baikov
Siberian State Medical University (SSMU)
Russian Federation

DM, Professor, Head of the Central Research Laboratory, Professor, Normal Physiology Department, 

2, Moscow Trakt, Tomsk, 634050



N. A. Bohan
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences; Siberian State Medical University (SSMU)
Russian Federation

Professor, Department of Psychotherapy and Psychological Counseling, 4, Aleutskaya Str., Tomsk, 634014;

DM, Professor, Academician of the RAS, Director, Mental Health Research Institute, 

Head of the Department of Psychiatry, Narcology and Psychotherapy, 2, Moscow Trakt, Tomsk, 634050



S. A. Ivanova
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences; Siberian State Medical University (SSMU); National Research Tomsk Polytechnic University (NR TPU)
Russian Federation

DM, Professor, Head of the Molecular Genetics and Biochemistry Laboratory, Deputy Director, 4, Aleutskaya Str., Tomsk, 634014;

2, Moscow Trakt, Tomsk, 634050;

Professor, Department of Ecology and Basic Safety, 30, Lenina Av., Tomsk, 634050



References

1. Davalieva K., Maleva Kostovska I., Dwork A.J. Proteomics research in schizophrenia. Frontiers in Cellular Neuroscience. 2016; 10: 18. DOI: 10.3389/fncel.2016.00018.

2. Guest F.L., Guest P.C., Martins-de-Souza D. The emergence of point-of-care blood-based biomarker testing for psychiatric disorders: enabling personalized medicine. Biomarkers in Medicine. 2016; 10 (4): 431–443. DOI: 10.2217/bmm-2015-0055.

3. Li C., Wang A., Wang C., Ramamurthy J., Zhang E., Guadagno E., Trakadis Y. Metabolomics in patients with psychosis: a systematic review. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2018; 177 (6): 580–588. DOI: 10.1002/ajmg.b.32662.

4. Pedrini M., Cao B., Nani J.V.S., Cerqueira R.O., Mansur R.B., Tasic L., Hayashi M.A.F., McIntyre R.S., Brietzke E. Advances and challenges in development of precision psychiatry through clinical metabolomics on mood and psychotic disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2019; 93: 182–188. DOI: 10.1016/j.pnpbp.2019.03.010.

5. Boyko A.S., Bohan N.A. Buneva V.N., Vetlugina T.P., Zozulya S.A., Ivanova S.A., Klyushnik T.P., Kornetova E.G., Losenkov I.S., Oleychik I.V., Semke A.V., Smirnova L.P., Uzbekov M.G., Fedorenko O.Ju. Biological markers of schizophrenia: search and clinical application edited by N.A. Bohan, S.A. Ivanova. Novosibirsk: SB RAS Publ., 2017: 146 (in Russ.).

6. Hisamatsu T., Okamoto S., Hashimoto M., Muramatsu T., Andou A., Uo M., Kitazume M.T., Matsuoka K., Yajima T., Inoue N., Kanai T., Ogata H., Iwao Ya., Yamakado M., Sakai R., Ono N., Ando T., Suzuki M., Hibi T. Novel, objective, multivariate biomarkers composed of plasma amino acid profiles for the diagnosis and assessment of inflammatory bowel disease. PLoS One. 2012; 7 (1): e31131. DOI: 10.1371/journal.pone.0031131. 7. Kim J.S., Kornhuber H.H., Schmid-Burgk W., Holzmьller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neuroscience Letters. 1980; 20 (3): 379–382. DOI: 10.1016/0304-3940(80)90178-0.

7. Van de Kerkhof N.W., Fekkes D., van der Heijden F.M., Hoogendijk W.J., Stцber G., Egger J.I., Verhoeven W.M. Cycloid psychoses in the psychosis spectrum: evidence for biochemical differences with schizophrenia. Neuropsychiatric Disease and Treatment. 2016; 12: 1927–1933. DOI: 10.2147/NDT.S101317.

8. Nagai T., Kirihara K., Tada M., Koshiyama D., Koike S., Suga M., Araki T., Hashimoto K., Kasai K. Reduced mismatch negativity is associated with increased plasma level of glutamate in first-episode psychosis. Scientific Reports. 2017; 7 (1): 2258. DOI: 10.1038/s41598-017-02267-1.

9. Steen N.E., Dieset I., Hope S., Vedal T.S.J., Smeland O.B., Matson W., Kaddurah-Daouk R., Agartz I., Melle I., Djurovic S., Jцnsson E.G., Bogdanov M., Andreassen O.A. Metabolic dysfunctions in the kynurenine pathway, noradrenergic and purine metabolism in schizophrenia and bipolar disorders. Psychological Medicine. 2019; 1–12. DOI: 10.1017/S0033291719000400.

10. McDonald J.W., Johnston M.V. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Research Reviews. 1990; 15 (1): 41–70. DOI: 10.1016/0165-0173(90)90011-C.

11. Macciardi F., Lucca A., Catalano M., Marino C., Zanardi R., Smeraldi E. Amino acid patterns in schizophrenia: some new findings. Psychiatry Research. 1990; 32 (1): 63–70. DOI: 10.1016/0165-1781(90)90136-s.

12. Oresic M., Tang J., Seppanen-Laakso T., Mattila I., Saarni S.E., Saarni S.I., Lonnqvist J., Sysi-Aho M., Hyotylainen T., Perala J., Suvisaari J. Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Medicine. 2011; 3 (3): 19. DOI: 10.1186/gm233.

13. Yang J., Chen T., Sun L., Zhao Z., Qi X., Zho K., Cao Y., Wang X., Qiu Y., Su M., Zhao A., Wang P., Yang P., Wu J., Feng G., He L., Jia W., Wan C. Potential metabolite markers of schizophrenia. Molecular Psychiatry. 2013; 18 (1): 67–78. DOI: 10.1038/mp.2011.131.

14. Van der Heijden F.M.M.A., Fekkes D., Tuinier S., Sijben A.E.S., Kahn R.S., Verhoeven W.M.A. Amino acids in schizophrenia: evidence for lower tryptophan availability during treatment with atypical antipsychotics? Journal of Neural Transmission. 2005; 112 (4): 577–585. DOI: 10.1007/s00702-004-0200-5.

15. Madeira C., Alheira F.V., Calcia M.A., Silva T.C., Tannos F.M., Vargas-Lopes C., Fisher M., Goldenstein N., Brasil M.A., Vinogradov S., Ferreira S.T., Panizzutti R. Blood levels of glutamate and glutamine in recent onset and chronic schizophrenia. Frontiers in Psychiatry. 2018; 9: 713. DOI: 10.3389/fpsyt.2018.00713.

16. Fukushima T., Iizuka H., Yokota A., Suzuki T., Ohno C., Kono Y., Nishikiori M., Seki A., Ichiba H., Watanabe Y., Hongo S., Utsunomiya M., Nakatani M., Sadamoto K., Yoshio T. Quantitative analyses of schizophrenia-associated metabolites in serum: serum D-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS One. 2014; 9 (7): e101652. DOI: 10.1371/journal.pone.0101652.

17. Ivanova S.A., Boyko A.S., Fedorenko O.Y., Krotenko N.M., Semke A.V., Bokhan N.A. Glutamate concentration in the serum of patients with schizophrenia. Procedia Chemistry. 2014; 10: 80–85. DOI: 10.1016/j.proche.2014.10.015.

18. Smith Q.R. Transport of glutamate and other amino acids at the blood-brain barrier. The Journal of Nutrition. 2000; 130 (4): 1016–1022S. DOI: 10.1093/jn/130.4.1016S.

19. Shulman Y., Grant S., Seres P., Hanstock C., Baker G., Tibbo P. The relation between peripheral and central glutamate and glutamine in healthy male volunteers. Journal of Psychiatry and Neuroscience. 2006; 31 (6): 406–410.

20. McGale E.H.F., Pye I.F., Stonier C., Hutchinson E.C., Aber G.M. Studies of the inter-relationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals. Journal of Neurochemistry. 1977; 29 (2): 291–297. DOI: 10.1111/j.1471-4159. 1977.tb09621.x.

21. Alfredsson G., Wiesel F.A., Lindberg M. Glutamate and glutamine in cerebrospinal fluid and serum from healthy volunteers-analytical aspects. Journal of Chromatography B: Biomedical Sciences and Applications. 1988; 424 (2): 378–384. DOI: 10.1016/S0378-4347(00)81116-0.

22. Bjerkenstedt L., Edman G., Hagenfeldt L., Sedvall G., Wiesel F.A. Plasma amino acids in relation to cerebrospinal fluid monoamine metabolites in schizophrenic patients and healthy controls. The British Journal of Psychiatry. 1985; 147 (3): 276–282. DOI: 10.1192/bjp.147.3.276.

23. Misiak B., Wisniewski J., Fleszar M.G., Frydecka D. Alterations in l-arginine metabolism in first-episode schizophrenia patients: Further evidence for early metabolic dysregulation. Schizophrenia Research. 2016; 178 (1–3): 56–57. DOI: 10.1016/j.schres.2016.08.032.

24. Sumiyoshi T., Anil A.E., Jin D., Jayathilake K., Lee M., Meltzer H.Y. Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms. International Journal of Neuropsychopharmacology. 2004; 7 (1): 1–8. DOI: 10.1017/S1461145703003900.

25. Calcia M.A., Madeira C., Alheira F.V., Silva T.C., Tannos F.M., Vargas-Lopes C., Goldenstein N., Brasil M.A., Ferreira S.T., Panizzutti R. Plasma levels of D-serine in Brazilian individuals with schizophrenia. Schizophrenia Research. 2012; 142 (13): 83–87. DOI: 10.1016/j.schres.2012.09.014.

26. Hashimoto K., Fukushima T., Shimizu E., Komatsu N., Watanabe H., Shinoda N., Nakazato M., Kumakiri C., Okada S., Hasegawa H., Imai K., Masaomi I. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N- methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Archives of General Psychiatry. 2003; 60 (6): 572–576. DOI: 10.1001/archpsyc.60.6.572.

27. Takano Y., Ozeki Y., Sekine M., Fujii K., Watanabe T., Okayasu H., Shinozaki T., Aoki A., Akiyama K., Homma H., Shimoda K. Multi-regression analysis revealed a relationship between l-serine and methionine, a component of one-carbon metabolism, in the normal control but not in the schizophrenia. Annals of General Psychiatry. 2016; 15 (1): 23. DOI: 10.1186/s12991-016-0113-3.

28. Bendikov I., Nadri C., Amar S., Panizzutti R., De Miranda J., Wolosker H., Agam G. A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophrenia Research. 2007; 90 (1–3): 41–51. DOI: 10.1016/j.schres.2006.10.010.

29. Hashimoto K., Engberg G., Shimizu E., Nordin C., Lindstrцm L.H., Iyo M. Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2005; 29 (5): 767–769. DOI: 10.1016/j.pnpbp.2005.04.023.

30. Reveley M.A., De Belleroche J., Recordati A., Hirsch S.R. Increased CSF amino acids and ventricular enlargement in schizophrenia: a preliminary study. Biological Psychiatry. 1987; 22 (4): 413–420. DOI: 10.1016/0006-3223(87)90163-6.

31. El-Tallawy H.N., Saleem T.H., El-Ebidi A.M., Hassan M.H., Gabra R.H., Farghaly W.M., El-Maal N.A., Sherkawy H.S. Clinical and biochemical study of D-serine metabolism among schizophrenia patients. Neuropsychiatric Disease and Treatment. 2017; 13: 1057–1063. DOI: 10.2147/NDT.S126979.

32. Genchi G. An overview on D-amino acids. Amino Acids. 2017; 49 (9): 1521–1533. DOI: 10.1007/s00726-017-2459-5.

33. Saleem S., Shaukat F., Gul A., Arooj M., Malik A. Potential role of amino acids in pathogenesis of schizophrenia. International Journal of Health Sciences. 2017; 11 (3): 63–68.

34. Ozeki Y., Sekine M., Fujii K., Watanabe T., Okayasu H., Takano Y., Shinozaki T., Aoki A., Akiyama K., Homma H., Shimoda K. Phosphoserine phosphatase activity is elevated and correlates negatively with plasma D-serine concentration in patients with schizophrenia. Psychiatry Research. 2016; 237: 344–350. DOI: 10.1016/j.psychres.2016.01.010.

35. He Y., Yu Z., Giegling I., Xie L., Hartmann A.M., Prehn C., Adamski J., Kahn R., Li Y., Illig T., Wang-Sattler R., Rujescu D. Schizophrenia shows a unique metabolomics signature in plasma. Translational Psychiatry. 2012; 2: e149. DOI: 10.1038/tp.2012.76.

36. Cao B., Wang D., Brietzke E., McIntyre R.S., Pan Z., Cha D., Rosenblat J.D., Zuckerman H., Liu Y., Xie Q., Wang J. Characterizing amino-acid biosignatures amongst individuals with schizophrenia: a case-control study. Amino Acids. 2018; 50(8): 1013–1023. DOI: 10.1007/s00726-018-2579-6.

37. Chiappelli J., Postolache T.T., Kochunov P., Rowland L.M., Wijtenburg S.A., Shukla D.K., Tagamets M., Du X., Savransky A., Lowry C.A., Can, A., Fuchs D., Hong L.E. Tryptophan metabolism and white matter integrity in schizophrenia. Neuropsychopharmacology. 2016; 41 (10): 2587–2595. DOI: 10.1038/npp.2016.66.

38. Giesbertz P., Ecker J., Haag A., Spanier B., Daniel H. An LC-MS/MS method to quantify acylcarnitine species including isomeric and odd-numbered forms in plasma and tissues. Journal of Lipid Research. 2015; 56 (10): 2029–2039. DOI: 10.1194/jlr.D061721.

39. Liu M.L., Zhang X.T., Du X.Y., Fang Z., Liu Z., Xu Y., Zheng P., Xu X.J., Cheng P.F., Huang T., Bai S.J., Zhao L.B., Qi Z.G., Shao W.H., Xie P. Severe disturbance of glucose metabolism in peripheral blood mononuclear cells of schizophrenia patients: a targeted metabolomics study. Journal of Translational Medicine. 2015; 13 (1): 226. DOI: 10.1186/s12967-015-0540-y.

40. Cao B., Wang D., Pan Z., Brietzke E., McIntyre R.S., Musial N., Mansur R.B., Subramanieapillai M., Zeng J., Huang N., Wang J. Characterizing acyl-carnitine biosignatures for schizophrenia: a longitudinal pre- and post-treatment study. Translational Psychiatry. 2019; 9 (1): 19. DOI: 10.1038/s41398-018-0353-x.

41. Rao M.L., Gross G., Strebel B., Brдunig P., Huber G., Klosterkцtter J. Serum amino acids, central monoamines, and hormones in drug-naive, drug-free, and neuroleptic-treated schizophrenic patients and healthy subjects. Psychiatry Research. 1990; 34 (3): 243–257. DOI: 10.1016/0165-1781(90)90003-n.

42. Wei J., Xu H., Ramchand C. N., Hemmings G.P. Low concentrations of serum tyrosine in neuroleptic-free schizophrenics with an early onset. Schizophrenia Research. 1995; 14 (3): 257–260. DOI: 10.1016/0920-9964(94)00080-R.

43. Tortorella A., Monteleone P., Fabrazzo M., Viggiano A., De Luca B., Maj M. Plasma concentrations of amino acids in chronic schizophrenics treated with clozapine. Neuropsychobiology. 2001; 44 (4): 167–171. DOI: 10.1159/000054937.

44. Evins A.E., Amico E.T., Shih V., Goff D.C. Clozapine treatment increases serum glutamate and aspartate compared to conventional neuroleptics. Journal of Neural Transmission. 1997; 104 (6–7): 76–766. DOI: 10.1007/BF01291892.

45. Yamamori H., Hashimoto R., Fujita Y., Numata S., Yasuda Y., Fujimoto M., Ohi K., Umeda-Yano S., Ito A., Ohmorie T., Hashimoto, K., Takeda M. Changes in plasma D-serine, L-serine, and glycine levels in treatment-resistant schizophrenia before and after clozapine treatment. Neuroscience Letters. 2014; 582: 93–98. DOI: 10.1016/j.neulet.2014.08.052.

46. Neeman G., Blanaru M., Bloch B., Kremer I., Ermilov M., Javitt D.C., Heresco-Levy U. Relation of plasma glycine, serine, and homocysteine levels to schizophrenia symptoms and medication type. American Journal of Psychiatry. 2005; 162 (9): 1738–1740. DOI: 10.1176/appi.ajp.162.9.1738.

47. Xuan J., Pan G., Qiu Y., Yang L., Su, M., Liu Y., Chen J., Feng G., Fang Y., Jia W., Xing Q., He L. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. Journal of Proteome Research. 2011; 10 (12): 5433–5443. DOI: 10.1021/pr2006796.

48. Cao B., Jin M., Brietzke E., McIntyre R.S., Wang D., Rosenblat J.D., Ragguett R.M., Zhang C., Sun X., Rong C., Wang J. Serum metabolic profiling using small molecular water-soluble metabolites in individuals with schizophrenia: A longitudinal study using a pre-post-treatment design. Psychiatry and Clinical Neurosciences. 2019; 73 (3): 100–108. DOI: 10.1111/pcn.12779.

49. Misiak B., Frydecka D., Laczmanski., Slezak R., Kiejna A. Effects of second-generation antipsychotics on selected markers of one-carbon metabolism and metabolic syndrome components in first-episode schizophrenia patients. European Journal of Clinical Pharmacology. 2014; 70 (12): 1433–1441. DOI: 10.1007/s00228-014-1762-2.

50. Leppik L., Kriisa K., Koido K., Koch K., Kajalaid K., Haring L., Vasar E., Zilmer M. Profiling of amino acids and their derivatives biogenic amines before and after antipsychotic treatment in first-episode psychosis. Frontiers in Psychiatry. 2018; 9: 155. DOI: 10.3389/fpsyt.2018.00155.

51. Ivanova S.A., Loonen A.J.M., Pechlivanoglou P., Freidin M.B., Al Hadithy A.F.Y., Rudikov E.V., Zhukova I.A., Govorin N.V., Sorokina V.A., Fedorenko O.Y., Alifirova V.M., Semke A.V., Brouwers J.R., Wilffert B. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Translational Psychiatry. 2012; 2: e67. DOI: 10.1038/tp.2011.66.

52. Ward K.M., Yeoman L., McHugh C., Kraal A.Z., Flowers S.A., Rothberg A.E., Karnovsky A., Das A.K., Ellingrod V.L., Stringer K.A. Atypical antipsychotic exposure may not differentiate metabolic phenotypes of patients with schizophrenia. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2018; 38 (6): 638–650. DOI: 10.1002/phar.2119.

53. Javitt D.C., Silipo G., Cienfuegos A., Shelley A.M., Bark N., Park M., Lindenmayer J.P., Suckow R., Zukin S.R. Adjunctive high-dose glycine in the treatment of schizophrenia. International Journal of Neuropsychopharmacology. 2001; 4 (4): 385–391. DOI: 10.1017/S1461145701002590.

54. Javitt D.C. Glycine transport inhibitors in the treatment of schizophrenia. Novel Antischizophrenia Treatments. 2012; 367–399. DOI: 10.1007/978-3-642-25758-2_12.

55. Heresco-Levy U., Ermilov M., Lichtenberg P., Bar G., Javitt D. C. High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biological Psychiatry. 2004; 55 (2): 165–171. DOI: 10.1016/S0006-3223(03)00707-8.

56. Greenwood L.M., Leung S., Michie P.T., Green A., Nathan P.J., Fitzgerald P., Johnston P., Solowij N., Kulkarni J., Croft R.J. The effects of glycine on auditory mismatch negativity in schizophrenia. Schizophrenia Research. 2018; 191: 61–69. DOI: 10.1016/j.schres.2017.05.031.

57. Kato Y., Hin N., Maita N., Thomas A.G., Kurosawa S., Rojas C., Yorita K., Slusher B.S., Fukui K., Tsukamoto T. Structural basis for potent inhibition of d-amino acid oxidase by thiophene carboxylic acids. European Journal of Medicinal Chemistry. 2018; 159: 23–34. DOI: 10.1016/j.ejmech.2018.09.040.

58. Koсyigit Y., Yoca G., Karahan S., Ayhan Y., Yazici M.K. L-arginine add-on treatment for schizophrenia: a randomized, double-blind, placebo-controlled, crossover study. Turk Psikiyatri Dergisi. 2018; 29 (3): 147–153. DOI: 10.5080/u22702.

59. Tayeb H.O., Murad H.A., Rafeeq M.M., Tarazi F.I. Pharmacotherapy of schizophrenia: toward a metabolomic-based approach. CNS Spectrums. 2018; 24 (3): 1–6. DOI: 10.1017/S1092852918000962.

60. Serrita J., Ralevski E., Yoon G., Petrakis I. A pilot randomized, placebo-controlled trial of glycine for treatment of schizophrenia and alcohol dependence. Journal of Dual Diagnosis. 2019; 15 (1): 1–10. DOI: 10.1080/15504263.2018.1549764.

61. MacKay M.B., Kravtsenyuk M., Thomas R., Mitchell N.D., Dursun S.M., Baker G.B. D-serine: potential therapeutic agent and/or biomarker in schizophrenia and depression? Frontiers in Psychiatry. 2019; 10: 25. DOI: 10.3389/fpsyt.2019.00025.

62. Tsai G., Yang P., Chung L.C., Lange N., Coyle J.T. D-serine added to antipsychotics for the treatment of schizophrenia. Biological Psychiatry. 1998; 44 (11): 1081–1089. DOI: 10.1016/S0006-3223(98)00279-0.

63. Heresco-Levy U., Javitt D.C., Ebstein R., Vas A., Lichtenberg P., Bar G., Catinari S., Ermilov M. D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biological Psychiatry. 2005; 57 (6): 577–585. DOI: 10.1016/j.biopsych.2004.12.037.

64. Kantrowitz J.T., Malhotra A.K., Cornblatt B., Silipo G., Balla A., Suckow R.F., Souza C.D., Saksa J., Woods S.W., avitt D.C. High dose D-serine in the treatment of schizophrenia. Schizophrenia Research. 2010; 121 (1–3): 125–130. DOI: 10.1016/j.schres.2010.05.012.

65. Kantrowitz J.T., Epstein M.L., Lee M., Lehrfeld N., Nolan K.A., Shope C., Petkova E., Silipo G., Javitt D.C. Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: correlation with symptoms. Schizophrenia Research. 2018; 191: 70–79. DOI: 10.1016/j.schres.2017.02.027.

66. Weise M., Heresco-Levy U., Davidson M., Javitt D.C., Werbeloff N., Gershon A.A., Abramovich Y., Amital D., Doron A., Konas S., Levkovitz Y., Liba D., Teitelbaum A., Mashiach M., Zimmerman Y. A multicenter, addon randomized controlled trial of low-dose d-serine for negative and cognitive symptoms of schizophrenia. The Journal of Clinical Psychiatry. 2012; 73 (6): 728–734.

67. DOI: 10.4088/JCP.11m07031. 68. Tsai G.E., Yang P., Chang Y.C., Chong M.Y. D-alanine added to antipsychotics for the treatment of schizophrenia. Biological Psychiatry. 2006; 59 (3): 230–234. DOI: 10.1016/j.biopsych.2005.06.032.

68. Umbricht D., Alberati D., Martin-Facklam M., Borroni E., Youssef E.A., Ostland M., Wallace T.L., Knoflach F., Dorflinger E., Wettstein J.G., Bausch, A., Garibaldi G., Santarelli L. Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiatry. 2014; 71 (6): 637–646. DOI: 10.1001/jamapsychiatry.2014.163.

69. Lane H.Y., Lin C.H., Green M.F., Hellemann G., Huang C.C., Chen P.W., Tun R., Chang Y.C., Tsai G.E. Addon treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor. JAMA Psychiatry. 2013; 70 (12): 1267–1275. DOI: 10.1001/jamapsychiatry.2013.2159.

70. Bruno A., Pandolfo G., Crucitti M., Lorusso S., Zoccali R.A., Muscatello M.R.A. Acetyl-L-carnitine augmentation of clozapine in partial-responder schizophrenia: a 12-week, open-label uncontrolled preliminary study. Clinical Neuropharmacology. 2016; 39 (6): 277–280. DOI: 10.1097/WNF.0000000000000170.

71. Chen A.T., Chibnall J.T., Nasrallah H.A. A meta-analysis of placebo-controlled trials of omega-3 fatty acid augmentation in schizophrenia: Possible stage-specific effects. Annals of Clinical Psychiatry. 2015; 27 (4): 289–296.

72. Sethi S., Brietzke E. Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. International Journal of Neuropsychopharmacology. 2015; 19 (3): pyv096. DOI: 10.1093/ijnp/pyv096.

73. Chan M.K., Gottschalk M.G., Haenisch F., Tomasik J., Ruland T., Rahmoune H., Guest P. C., Bahn S. Applications of blood-based protein biomarker strategies in the study of psychiatric disorders. Progress in Neurobiology. 2014; 122: 45–72. DOI: 10.1016/j.pneurobio.2014.08.002.

74. Nascimento J.M., Martins-de-Souza D. The proteome of schizophrenia. NPJ Schizophrenia. 2015; 1: 14003. DOI: 10.1038/npjschz.2014.3.


Review

For citations:


Mednova I.A., Serebrov V.Yu., Baikov A.N., Bohan N.A., Ivanova S.A. Amino acids and acylcarnitines as potential metabolomic markers of schizophrenia: new approaches to diagnostics and therapy. Bulletin of Siberian Medicine. 2019;18(4):197-208. https://doi.org/10.20538/1682-0363-2019-4-197-208

Views: 1599


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)