Preview

Bulletin of Siberian Medicine

Advanced search

Morphological and functional characteristics of retrosternal adipose tissue and their relation to arterial stiffness parameters in patients after coronary artery bypass grafting

https://doi.org/10.20538/1682-0363-2020-2-63-71

Abstract

Background. The attention of many researchers is focused on studying the role of adipokines secreted by subcutaneous, visceral, epicardial, and perivascular adipose tissues in the pathogenesis of diseases of the cardiovascular system. At the same time, adipose tissue of retrosternal localization remains out of research focus. This pool of fat cells is formed at the site of the thymic involution and has a significant volume. However, their functional activity and participation in the development of cardiovascular pathology remain unexplored.

Aim. To study the morphological characteristics of adipocytes of the retrosternal adipose tissue (RSAT) and their production of adipokines in comparison with epicardial (EAT) and subcutaneous adipose tissue (SCAT) and to investigate their relationships with arterial stiffness parameters in patients who underwent coronary artery bypass grafting.

Materials and methods. The study included 17 patients (12 men/5 women aged 40–70 years) with the diagnosed coronary artery disease (CAD) who underwent coronary artery bypass grafting (CABG). Each patient underwent measurement of carotid-femoral pulse wave velocity (PWV) and aortic augmentation index (AIx) with the oscillometric device. Isolated adipocytes were obtained enzymatically from explants of SCAT, EAT and RSAT during coronary artery bypass grafting. The adipocytes were analyzed under the microscope at 200x magnification. The release of adiponectin, leptin and insulin was studied in the adipocyte supernatant after 1 hour incubation using ELISA.

Results. It was found that adipocytes of the RSAT are smaller than adipocytes of SCAT: 83.96 ± 2.21 vs 98.62 ± 2.67 μm (p = 0.00002), respectively, and comparable in size to adipocytes of EAT: 86.65 ± 1.33 μm. The release of adiponectin by adipocytes of the RSAT turned out to be comparable to the production of this adipokine in SCAT and EAT, however, adipocytes of the RSAT produce less leptin than SCAT and EAT: 0.26 (0.19; 0.27) ng/l vs 0.37 (0.28; 0.55) (р = 0.01) and vs 0.32 (0.28; 0.44) (р = 0.006) ng/ml, respectively. Furthermore, RSAT produce less insulin than SCAT and EAT: 1.56 (1.03; 2.08) vs 1.70 (0.99; 2.18) ng/ml, (р = 0.0022) and 1.76 (1.16; 2.40) ng/ml (р = 0.006), respectively.
A positive correlation was found between the secretion of leptin by adipocytes of the RSAT and the AIx  (
rs = 0.52, p = 0.046). An inverse relationship was found between insulin secretion by retrosternal adipocytes and PWV rs = –0.55, p = 0.035). There was no relationship between the size of the  retrosternal adipocyte or hypertrophy of the thymic adipocytes (more than 100 μm) and the production of leptin and insulin and arterial stiffness parameters. 

Conclusions. The data of our pilot study show that adipocyte hypertrophy of the retrosternal AT is not a significant marker of adipokine production disturbance. The observed relationships suggest that an increase in leptin production and reduced insulin secretion by retrosternal AT may contribute to the formation of adipokine-related arterial stiffness. Based on the data obtained, it can be assumed that adipokines produced by the retrosternal AT can participate in the formation of arterial stiffness in patients with coronary artery disease.  

About the Authors

N. V. Naryzhnaya
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation


O. A. Koshelskaya
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation


O. A. Kharitonova
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation


N. Y. Zhigaleva
Siberian State Medical University
Russian Federation
2, Mosсow Trakt, Tomsk, 634050, Russian Federation


O. A. Zhuravleva
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation


V. V. Evtushenko
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation


S. L. Andreev
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation


A. V. Evtushenko
Kuzbass Cardiology Center
Russian Federation
6, Sosnoviy blvd., Kemerovo, 650002, Russian Federation


A. A. Boshchenko
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation


References

1. Doronzo G., Russo I., Mattiello L., Riganti C., Anfossi G., Trovati M. Insulin activates hypoxia-inducible factor-1alpha in human and rat vascular smooth muscle cells via phosphatidylinositol-3 kinase and mitogen-activated protein kinase pathways: impairment in insulin resistance owing to defects in insulin signalling. Diabetologia. 2006; 49 (5): 1049–1063. DOI: 10.1007/s00125-006-0156-0.

2. Sato F., Maeda N., Yamada T., Namazui H., Fukuda S., Natsukawa T., Nagao H., Murai J., Masuda S., Tanaka Y., Obata Y., Fujishima Y., Nishizawa H., Funahashi T., Shimomura I. Association of epicardial, visceral, and subcutaneous fat with cardiometabolic diseases. Circ. J. 2018; 82 (2): 502–508. DOI: 10.1253/circj.CJ-17-0820.

3. Mahmoud A.M., Ali M.M., Miranda E.R., Mey J.T., Blackburn B.K., Haus J.M., Phillips S.A. Nox2 contributes to hyperinsulinemia-induced redox imbalance and impaired vascular function. Redox Biol. 2017; 13: 288–300. DOI: 10.1016/j.redox.2017.06.001.

4. Kologrivova I.V., Vinnitskaya I.V., Koshelskaya O.A., Suslova T.E. Visceral obesity and cardiometabolic risk: features of hormonal and immune regulation. Obesity and Metabolism. 2017; 14 (3): 3–10. DOI: 10.14341/OMET201733-10.

5. Maslov L.N., Naryzhnaya N.V., Boshchenko A.A., Popov S.V., Ivanov V.V., Oeltgen P.R. Is oxidative stress of adipocytes a cause or a consequence of the metabolic syndrome? Journal of Clinical and Translational Endocrinology. 2018; 15: 1–5. DOI: 10.1016/j.jcte.2018.11.001.

6. Cavallotti C., D’Andrea V., Tonnarini G., Cavallotti C., Bruzzone P. Age-related changes in the human thymus studied with scanning electron microscopy. Microsc. Res. Tech. 2008; 71 (8): 573–578. DOI: 10.1002/jemt.20588.

7. Safar M.E., Czernichow S., Blacher J. Obesity, arterial stiffness, and cardiovascular risk. J. Am. Soc. Nephrol. 2006; 17: S109–111. DOI: 10.1681/ASN.2005121321.

8. Al-Talabany S., Mordi I., Graeme Houston J., Colhoun H.M., Weir-McCall J.R., Matthew S.Z., Looker H.C., Levin D., Belch J.J.F., Dove F., Khan F., Lang C.C. Epicardial adipose tissue is related to arterial stiffness and inflammation in patients with cardiovascular disease and type 2 diabetes. MC Cardiovasc. Disord. 2018; 18 (1): 31. DOI: 10.1186/s12872-018-0770-z.

9. Akhmedzhanov N.M., Dedov I.I., Zvenigorodskaya L.A. et al. Russian experts’ consensus on metabolic syndrome problem in the Russian Federation: definition, diagnostic criteria, primary prevention, and treatment. Cardiovascular Therapy and Prevention. 2010; 9 (5): 4–11.

10. Thalmann S., Juge-Aubry C.E., Meier C.A. Explant cultures of white adipose tissue. In: adipose tissue protocols. Methods in Molecular Biology. Humana Press. 2008; 456: 195–199. DOI: 10.1007/978-1-59745-245-8_14.

11. Hiuge-Shimizu A., Kishida K., Funahashi T. et al. Coexistence of visceral fat and multiple risk factor accumulations is strongly associated with coronary artery disease in japanese (The VACATION-J Study). Journal of Atherosclerosis and Thrombosis. 2012; 19 (7): 657–663. DOI: 10.5551/jat.13037.

12. Abazid R., Kattea M., Sayed S. et al. Visceral adipose tissue influences on coronary artery calcification at young and middle-age groups using computed tomography angiography. Avicenna Journal of Medicine. 2015; 5 (3): 83–88. DOI: 10.4103/2231-0770.160242.

13. Tanaka T., Kishi S., Ninomiya K., Tomii D., Koseki K., Sato Y., Okuno T., Sato K., Koike H., Yahagi K., Komiyama K., Aoki J., Tanabe K. Impact of abdominal fat distribution, visceral fat, and subcutaneous fat on coronary plaque scores assessed by 320-row computed tomography coronary angiography. Atherosclerosis. 2019; 287: 155–161. DOI: 10.1016/j.atherosclerosis.2019.06.910.

14. Ronti T., Lupattelli G., Mannarino E. The endocrine function of adipose tissue: an update. Clinical Endocrinology. 2006; 64 (4): 355–365. DOI: 10.1111/j.1365-2265.2006.02474.-х.

15. Ostanko V.L., Kalacheva T.P., Kalyuzhina E.V., Livshits I.K., Shalovay A.A., Chernogoryuk G.E., Bespalova I.D., Yunusov R.S., Lukashova L.V., Pomogaeva A.P., Teplyakov A.T., Kalyuzhin V.V. Biological markers in risk stratification and progression of cardiovascular disease: present and future. Bulletin of Siberian Medicine. 2018; 17 (4): 264–280. DOI: 10.20538/1682-0363-2018-4-264–280.

16. Uchasova E.G., Gruzdeva O.V., Dyleva Y.A., Akbasheva O.E. Epicardial adipose tissue: pathophysiology and role in the development of cardiovascular diseases. Bulletin of Siberian Medicine. 2018; 17 (4): 254–263. DOI: 10.20538/1682-0363-2018-4-254–263.

17. Neeland I.J., Ross R., Després J.P., Matsuzawa Y., Yamashita S., Shai I., Seidell J., Magni P., Santos R.D., Arsenault B., Cuevas A., Hu F.B., Griffin B., Zambon A., Barter P., Fruchart J.C., Eckel R.H. International atherosclerosis society; International chair on cardiometabolic risk working group on visceral obesity. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019; 7 (9): 715–725. DOI: 10.1016/S2213-8587(19)30084-1.

18. Gullaksen S., Funck K.L., Laugesen E., Hansen T.K., Dey D., Poulsen P.L. Volumes of coronary plaque disease in relation to body mass index, waist circumference, truncal fat mass and epicardial adipose tissue in patients with type 2 diabetes mellitus and controls. Diab. Vasc. Dis. Res. 2019; 16 (4): 328–336. DOI: 10.1177/1479164119825761.

19. Austys D., Dobrovolskij A., Jablonskienė V., Dobrovolskij V., Valevičienė N., Stukas R. Epicardial adipose tissue accumulation and essential hypertension in non-obese adults. Medicina (Kaunas). 2019; 55 (8): е456. DOI: 10.3390/medicina55080456.

20. Ferrara D., Montecucco F., Dallegri F., Carbone F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J. Cell Physiol. 2019; 234 (12): 21630–21641. DOI: 10.1002/jcp.28821.

21. Kohara K., Ochi M., Okada Y., Yamashita T., Ohara M., Kato T., Nagai T., Tabara Y., Igase M., Miki T. Clinical characteristics of high plasma adiponectin and high plasma leptin as risk factors for arterial stiffness and related end-organ damage. Atherosclerosis. 2014; 235 (2): 424–429. DOI: 10.1016/j.atherosclerosis.2014.05.940.

22. Mac Ananey O., McLoughlin B., Leonard A., Maher L., Gaffney P., Boran G., Maher V. Inverse relationship between physical activity, adiposity, and arterial stiffness in healthy middle-aged subjects. J. Phys. Act Health. 2015; 12 (12): 1576–1581. DOI: 10.1123/jpah.2014-0395.

23. Zachariah J.P., Hwang S., Hamburg N.M., Benjamin E.J., Larson M.G., Levy D., Vita J.A., Sullivan L.M., Mitchell G.F., Vasan R.S. Circulating adipokines and vascular function: cross-sectional associations in a community-based cohort. Hypertension. 2016; 67 (2): 294–300. DOI: 10.1161/HYPERTENSIONAHA.115.05949.

24. Aitken-Buck H.M., Babakr A.A., Coffey S., Jones P.P., Tse R.D., Lamberts R.R. Epicardial adipocyte size does not correlate with body mass index. Cardiovasc. Pathol. 2019; 43: 107144. DOI: 10.1016/j.carpath.2019.07.003.

25. Bambace C., Telesca M., Zoico E., Sepe A., Olioso D., Rossi A., Corzato F., Di Francesco V., Mazzucco A., Santini F., Zamboni M. Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men. Cardiovasc. Pathol. 2011; 20 (5): e153–156. DOI: 10.1016/j.carpath.2010.07.005.

26. Martínez-Martínez E., Miana M., Jurado-López R., Bartolomé M.V., Souza Neto F.V., Salaices M., López-Andrés N., Cachofeiro V. The potential role of leptin in the vascular remodeling associated with obesity. Int. J. Obes (Lond.). 2014; 38 (12): 1565–1572. DOI: 10.1038/ijo.2014.37.

27. Trovati M., Doronzo G., Barale C., Vaccheris C., Russo I., Cavalot F. Leptin and vascular smooth muscle cells. Curr. Pharm. Des. 2014; 20 (4): 625–634. DOI: 10.2174/13816128113199990022.

28. Sista A.K., O’Connell M.K., Hinohara T., Oommen S.S., Fenster B.E., Glassford A.J., Schwartz E.A., Taylor C.A., Reaven G.M., Tsao P.S. Increased aortic stiffness in the insulin-resistant Zucker fa/fa rat. Am. J. Physiol. Heart Circ. Physiol. 2005; 289 (2): H845–851. DOI: 10.1152/ajpheart.00134.2005.

29. Sun H., Zhong M., Miao Y., Ma X., Gong H.P., Tan H.W., Zhang Y., Zhang W. Impaired elastic properties of the aorta in fat-fed, streptozotocin-treated rats. Vascular remodeling in diabetic arteries. Cardiology. 2009; 114 (2): 107–113. DOI: 10.1159/000219211.

30. Gordin D., Saraheimo M., Tuomikangas J., Soro-Paavonen A., Forsblom C., Paavonen K., Steckel-Hamann B., Harjutsalo V., Nicolaou L., Pavo I., Koivisto V., Groop P.H. Insulin exposure mitigates the increase of arterial stiffness in patients with type 2 diabetes and albuminuria: an exploratory analysis. Acta Diabetol. 2019; 56 (11): 1169–1175. DOI: 10.1007/s00592-019-01351-4.

31. Doronzo G., Russo I., Mattiello L., Riganti C., Anfossi G., Trovati M. Insulin activates hypoxia-inducible factor-1alpha in human and rat vascular smooth muscle cells via phosphatidylinositol-3 kinase and mitogen-activated protein kinase pathways: impairment in insulin resistance owing to defects in insulin signalling. Diabetologia. 2006; 49 (5): 1049–1063. DOI: 10.1007/s00125-006-0156-0.

32. Mahmoud A.M., Ali M.M., Miranda E.R., Mey J.T., Blackburn B.K., Haus J.M., Phillips S.A. Nox2 contributes to hyperinsulinemia-induced redox imbalance and impaired vascular function. Redox Biol. 2017; 13: 288–300. DOI: 10.1016/j.redox.2017.06.001.


Review

For citations:


Naryzhnaya N.V., Koshelskaya O.A., Kharitonova O.A., Zhigaleva N.Y., Zhuravleva O.A., Evtushenko V.V., Andreev S.L., Evtushenko A.V., Boshchenko A.A. Morphological and functional characteristics of retrosternal adipose tissue and their relation to arterial stiffness parameters in patients after coronary artery bypass grafting. Bulletin of Siberian Medicine. 2020;19(2):63-71. https://doi.org/10.20538/1682-0363-2020-2-63-71

Views: 907


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)