Molecular mechanisms of the effects of N-ethylmaleimide and 1,4-dithioerythritol on regulation of apoptosis in P19 cells under hypoxia
https://doi.org/10.20538/1682-0363-2020-2-72-77
Abstract
Relevance. Impairment of apoptosis regulation in P19 cells is correlated with generation of oxidative stress. Under hypoxia, changes in mitochondrial functions occur, which may exacerbate oxidative stress in the tumor cell. The aim of the study was to evaluate the effects of N-ethylmaleimide and 1,4-dithioerythritol on implementation and regulation of apoptosis in P19 cells under hypoxia in vitro.
Materials and methods. P19 cells (mouse teratocarcinoma) cultured under hypoxia served as the material for the study. For redox status modulation, 5mM N-ethylmaleimide and 1,4-dithioerythritol in the final concentrations of 5 mM were used. The intracellular concentration of calcium ions, the transmembrane potential and the number of Annexin V, CD95 and CD120 positive cells were determined by flow cytometry. The levels of reduced, oxidized and protein-bound glutathione, protein SH groups, hydroxyl radical and protein carbonyl derivatives were measured by spectrophotometry.
Results. The alteration in the redox status of the glutathione system under hypoxia, accompanied by oxidative modification of proteins (glutathionylation and carbonylation), influences the metabolism in the tumor cell on the whole. Under the effects of 1,4-dithioerythritol, an SH group protector, this alteration promotes formation of additional mechanisms to escape apoptosis, whereas under the effects of N-ethylmaleimide, an SH group blocker, it, on the contrary, promotes apoptosis activation.
Conclusions. The changes in the redox homeostasis of the tumor cell and modulation of oxidative modification of proteins (glutathionylation and carbonylation) under hypoxia are one of the promising approaches to targeted regulation of cell death.
About the Authors
O. L. NosarevaRussian Federation
2, Mosсow Trakt, Tomsk, 634050, Russian Federation
D. S. Orlov
Russian Federation
2, Mosсow Trakt, Tomsk, 634050, Russian Federation
E. V. Shakhristova
Russian Federation
2, Mosсow Trakt, Tomsk, 634050, Russian Federation
E. A. Stepovaya
Russian Federation
2, Mosсow Trakt, Tomsk, 634050, Russian Federation
References
1. Sinha K., Das J., Pal P.B., Sil P.C. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Archives of Toxicology. 2013; 87 (7): 1157–1180. DOI: 10.1007/s00204-013-1034-4.
2. Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016; 1863 (12): 2977–2992. DOI: 10.1016/j.bbamcr.2016.09.012.
3. Moldogazieva N.T., Mokhosoev I.M., Feldman N.B., Lutsenko S.V. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radical Research. 2018; 52 (5): 507–543. DOI: 10.1080/10715762.2018.1457217.
4. Tew K.D., Manevich Y., Grek C., Xiong Y., Uys J., Townsend D.M. The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radical Biology and Medicine. 2011; 51 (2): 299–313. DOI: 10.1016/j.freeradbiomed.2011.04.013.
5. Patwardhan R.S., Sharma D., Checker R., Thoh M., Sandur S.K. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance. Free Radical Research. 2015; 49 (10): 1218–1232. DOI: 10.3109/10715762.2015.1056180.
6. Shakhristova E.V., Stepovaya E.A., Ryazantseva N.V., Nosareva O.L., Yakushina V.D., Ivanov V.V., Novitskii V.V. Role of glutathione system redox potential in apoptosis dysregulation in MCF-7 breast adenocarcinoma. Bulletin of Experimental Biology and Medicine. 2016; 160 (3): 364–367. DOI: 10.1007/s10517-016-3172-1.
7. Shashova E.E., Astakhova T.M., Plekhanova A.S., Bogomyagkova Y.V., Lyupina Y.V., Sumedi I.R., Slonimskaya E.M., Erokhov P.A., Abramova E.B., Rodoman G.V., Kuznetsov N.A., Kondakova I.V., Sharova N.P., Choinzonov E.L. Changes in
8. proteasome chymotrypsin-like activity during the development of human mammary and thyroid carcinomas. Bulletin of Experimental Biology and Medicine. 2013; 156 (2): 242–244.
9. Kondakova I.V., Spirina L.V., Koval V.D., Shashova E.E., Choinzonov E.L., Ivanova E.V., Kolomiets L.A., Chernyshova A.L., Slonimskaya E.M., Usynin E.A., Afanasev S.G. Chymotrypsin-like activity and subunit composition of proteasomes in human cancers. Molecular Biology. 2014; 48 (3): 384–389.
10. Ryazantseva N.V., Stepovaya E.A., Nosareva O.L., Konovalova E.V., Orlov D.S., Naumova A.I., Didenko S.A., Vesnina O.N., Shakhristova E.V., Zima A.P., Novitskii V.V. Role of heat shock protein 27 in regulation of glutathione system and apoptosis of Jurkat tumor cells and blood lymphocytes. Bulletin of Experimental Biology and Medicine. 2015; 158 (3): 377–379. DOI: 10.1007/s10517-015-2766-3.
11. Marengo B., Nitti M., Furfaro A.L., Colla R., Ciucis C.D., Marinari U.M., Pronzato M.A., Traverso N., Domenicotti C. Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxidative Medicine and Cellular Longevity. 2016; 2016: 6235641. DOI: 10.1155/2016/6235641.
12. Zhang T., Suo C., Zheng C., Zhang H. Hypoxia and metabolism in metastasis. Advances in Experimental Medicine and Biology. 2019; 1136: 87–95. DOI: 10.1007/978-3-030-12734-3_6.
13. Sahaf B., Heydari K., Herzenberg L.A. Lymphocyte surface thiol levels. Proc. Natl. Acad. Sci. USA. 2003; 100 (7): 4001–4005. DOI: 10.1073/pnas.2628032100
14. Brunelli L., Crow J.P., Beckman J.S. The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Archives of Biochemistry and Biophysics. 1995; 316 (1): 327–334. DOI: 10.1006/abbi.1995.1044
15. Thom S.R., Elbuken M.E. Oxygen-dependent antagonism of lipid peroxidation. Free Radical Biology and Medicine. 1991; 10 (6): 413–426. DOI: 10.1016/0891-5849(91)90050-d
16. Kojima S., Nakayama K., Ishida H. Low dose gamma-rays activate immune functions via induction of glutathione and delay tumor growth. Journal of Radiation Research. 2004; 45 (1): 33–39. DOI: 10.1269/jrr.45.33.
17. Burchill B.R., Oliver J.M., Pearson C.B., Leinbach E.D., Berlin R.D. Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes. Journal of Cell Biology. 1978; 76 (2): 439–447. DOI: 10.1083/jcb.76.2.439.
18. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976; 72: 248–254. DOI: 10.1006/abio.1976.9999.
19. Merritt J.E., McCarthy S.A., Davies M.P., Moores K.E. Use of fluo-3 to measure cytosolic Ca2+ in platelets and neutrophils. Loading cells with the dye, calibration of traces, measurements in the presence of plasma, and buffering of cytosolic Ca2+. The Biochemical Journal. 1990; 269 (2): 513–519. DOI: 10.1042/bj2690513.
20. Munro D., Treberg J.R. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. The Journal of Experimental Biology. 2017; 220 (Pt 7): 1170–1180. DOI: 10.1242/jeb.132142.
Review
For citations:
Nosareva O.L., Orlov D.S., Shakhristova E.V., Stepovaya E.A. Molecular mechanisms of the effects of N-ethylmaleimide and 1,4-dithioerythritol on regulation of apoptosis in P19 cells under hypoxia. Bulletin of Siberian Medicine. 2020;19(2):72-77. https://doi.org/10.20538/1682-0363-2020-2-72-77