Growth and characterization of a tissue-engineered construct from human coronary artery smooth muscle cells
https://doi.org/10.20538/1682-0363-2020-2-85-95
Abstract
Aim. To optimize a bioengineered I-Wire platform to grow tissue-engineered constructs (TCs) derived from coronary artery smooth muscle cells and characterize the mechano-elastic properties of the grown TCs.
Materials and methods. A fibrinogen-based cell mixture was pipetted in a casting mold having two parallel titanium anchoring wires inserted in the grooves on opposite ends of the mold to support the TC. The casting mold was 3 mm in depth, 2 mm in width and 12 mm in length. To measure TC deformation, a flexible probe with a diameter of 365 mcm and a length of 42 mm was utilized. The deflection of the probe tip at various tensile forces applied to the TC was recorded using an inverted microscope optical recording system. The elasticity modulus was calculated based on a stretch-stress diagram reconstructed for each TC. The mechano-elastic properties of control TCs and TCs under the influence of isoproterenol (Iso), acetylcholine (ACh), blebbistatin (Bb), and cytochalasin D (Cyto-D) were evaluated. Immunohistochemical staining of smooth muscle α-actin, desmin and the cell nucleus
was implemented for the structural characterization of the TCs.
Results. The TCs formed on day 5–6 of incubation. Subsequent measurements during the following 7 days did not reveal significant changes in elasticity. Values of the elastic modulus were 7.4 ± 1.5 kPa on the first day, 7.9 ± 1.4 kPa on the third day, and 7.8 ± 1.9 kPa on the seventh day of culturing after TC formation. Changes in the mechano-elastic properties of the TCs in response to the subsequent application of Bb and Cyto-D had a two-phase pattern, indicating a possibility of determining active and passive elements of the TC elasticity. The application of 1 µM of Iso led to an increase in the value of the elastic modulus from 7.9 ± 1.5 kPa to 10.2 ± 2.1 kPa (p < 0.05, n = 6). ACh did not cause a significant change in elasticity.
Conclusion. The system allows quantification of the mechano-elastic properties of TCs in response to pharmacological stimuli and can be useful to model pathological changes in vascular smooth muscle cells.
About the Authors
A. A. SulginRussian Federation
2, Mosсow Traкt, Tomsk, 634050, Russian Federation
T. N. Sidorova
United States
1211, Medical Center Dr., Nashville, 37232, USA
V. Y. Sidorov
United States
1221, Stevenson Center Ln., Nashville, 37240, USA
References
1. Iyemere V.P., Proudfoot D., Weissberg P.L., Weissberg P.L., Shanahan C.M. Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J. Intern. Med. 2006; 260 (3): 192–210. DOI: 10.1111/j.1365-2796.2006.01692.x.
2. Bennett M.R., Sinha S., Owens G.K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 2016; 118 (4): 692–702. DOI: 10.1161/CIRCRESAHA.115.306361.
3. Ailawadi G., Moehle C.W., Pei H., Walton S.P., Yang Z., Kron I.L., Lau C.L., Owens G.K. Smooth muscle phenotypic modulation is an early event in aortic aneurysms. J. Thorac. Cardiovasc. Surg. 2009; 138 (6): 1392–1399. DOI: 10.1016/j.jtcvs.2009.07.075.
4. Touyz R.M., Alves-Lopes R., Rios F.J., Camargo L.L., Anagnostopoulou A., Arner A., Montezano A.C. Vascular smooth muscle contraction in hypertension. Cardiovasc. Res. 2018; 114 (4): 529–539. DOI: 10.1093/cvr/cvy023.
5. Gwyther T.A., Hu J.Z., Billiar K.L., Rolle M.W. Directed cellular self-assembly to fabricate cell-derived tissue rings for biomechanical analysis and tissue engineering. J. Vis. Exp. 2011; 57: e3366. DOI: 10.3791/3366.
6. Dash B.C., Levi K., Schwan J., Luo J., Bartulos O., Wu H., Qiu C., Yi T., Ren Y., Campbell S., Rolle M.W., Qyang Y. Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells. Stem Cell Reports. 2016; 7 (1): 19–28. DOI: 10.1016/j.stemcr.2016.05.004.
7. West A.R., Zaman N., Cole D.J., Walker M.J., Legant W.R., Boudou T., Chen C.S., Favreau J.T., Gaudette G.R., Cowley E.A., Maksym G.N. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle. Am. J. Physiol. Lung. Cell Mol. Physiol. 2013; 304 (1): L4–16. DOI: 10.1152/ajplung.00168.2012.
8. Vunjak Novakovic G., Eschenhagen T., Mummery C. Myocardial tissue engineering: in vitro models. Cold Spring Harb Perspect Med. 2014; 4 (3): pii: a014076. DOI: 10.1101/cshperspect.a014076.
9. Sidorov V.Y., Samson P.C., Sidorova T.N., Davidson J.M., Lim C.C., Wikswo J.P. I-Wire Heart-on-a-Chip I: Three-dimensional cardiac tissue constructs for physiology and pharmacology. Acta Biomater. 2017; 48: 68–78. DOI: 10.1016/j.actbio.2016.11.009.
10. Schroer A.K., Shotwell M.S., Sidorov V.Y., Wikswo J.P., Merryman W.D. I-Wire Heart-on-a-Chip II: Biomechanical analysis of contractile, three-dimensional cardiomyocyte tissue constructs. Acta Biomater. 2017; 48: 79–87. DOI: 10.1016/j.actbio.2016.11.010.
11. Ahmann K.A., Weinbaum J.S., Johnson S.L., Tranquillo R.T. Fibrin degradation enhances vascular smooth muscle cell proliferation and matrix deposition in fibrin-based tissue constructs fabricated in vitro. Tissue Eng. Part A. 2010; 16 (10): 3261–3270. DOI: 10.1089/ten.tea.2009.0708.
12. Kovacs M., Toth J., Hetenyi C., Malnasi-Csizmadia A., Sellers J.R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 2004; 279 (34): 35557–35563. DOI: 10.1074/jbc.M405319200.
13. Wakatsuki T., Schwab B., Thompson N.C., Elson E.L. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J. Cell Sci. 2001; 114 (Pt 5): 1025–1036. PMID: 11181185.
14. Warren M.L. Forces. In: Taylor E.F. (edit.) Introductory Physics. San Francisco: W.H. Freeman and Company, 1979: 82–83.
15. Gunst S.J., Zhang W. Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am. J. Physiol. Cell Physiol. 2008; 295 (3): C576–587. DOI: 10.1152/ajpcell.00253.2008.
16. Paulin D., Li Z. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp. Cell Res. 2004; 301 (1): 1–7. DOI: 10.1016/j.yexcr.2004.08.004.
17. Hirai J., Kanda K., Oka T., Matsuda T. Highly oriented, tubular hybrid vascular tissue for a low pressure circulatory system. Asaio J. 1994; 40 (3): M383–388. PMID: 8555543 DOI: 10.1097/00002480-199407000-00027.
18. Seliktar D., Black R.A., Vito R.P., Nerem R.M. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 2000; 28 (4): 351–362. PMID: 10870892. DOI: 10.1114/1.275.
19. Rowe S.L., Stegemann J.P. Interpenetrating collagen-fibrin composite matrices with varying protein contents and ratios. Biomacromolecules. 2006; 7 (11): 2942–2948. DOI: 10.1021/bm0602233.
20. Cummings C.L., Gawlitta D., Nerem R.M., Stegemann J.P. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials. 2004; 25 (17): 3699–3706. DOI: 10.1016/j.biomaterials.2003.10.073.
21. Sehgel N.L., Sun Z., Hong Z., Hunter W.C., Hill M.A., Vatner D.E., Vatner S.F., Meininger G.A. Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging. Hypertension. 2015; 65 (2): 370–377. DOI: 10.1161/HYPERTENSIONAHA.114.04456.
22. Hong Z., Reeves K.J., Sun Z., Li Z., Brown N.J., Meininger G.A. Vascular smooth muscle cell stiffness and adhesion to collagen I modified by vasoactive agonists. PLoS One. 2015; 10 (3): e0119533. DOI: 10.1371/journal.pone.0119533.
23. Zhou N., Lee J.J., Stoll S., Ma B., Costa K.D., Qiu H. Rho kinase regulates aortic vascular smooth muscle cell stiffness via actin/SRF/myocardin in hypertension. Cell Physiol. Biochem. 2017; 44 (2): 701–715. DOI: 10.1159/000485284.
24. Qiu H., Zhu Y., Sun Z., Trzeciakowski J.P., Gansner M., Depre C., Resuello R.R., Natividad F.F., Hunter W.C., Genin G.M., Elson E.L., Vatner W.E., Meininger G.A., Vatler S.F. Short communication: vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging. Circ. Res. 2010; 107 (5): 615–619. DOI: 10.1161/CIRCRESAHA.110.221846.
25. Zhu Y., Qiu H., Trzeciakowski J.P., Sun Z., Li Z., Hong Z., Hill M.A., Hunter W.C., Vatner D.E., Vatner S.F., Meininger G.A. Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging. Aging Cell. 2012; 11 (5): 741–750. DOI: 10.1111/j.1474-9726.2012.00840.x.
26. Shaikh F.M., Callanan A., Kavanagh E.G., Burke P.E., Grace P.A., McGloughlin T.M. Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs. 2008; 188 (4): 333–346. DOI: 10.1159/000139772.
27. Litvinov R.I., Weisel J.W. Fibrin mechanical properties and their structural origins. Matrix Biol. 2017; 60–61: 110–123. DOI: 10.1016/j.matbio.2016.08.003.
28. Rensen S.S., Doevendans P.A., van Eys G.J. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 2007; 15 (3): 100–108. DOI: 10.1007/bf03085963.
29. Tuna B.G., Bakker E.N., VanBavel E. Smooth muscle biomechanics and plasticity: relevance for vascular calibre and remodelling. Basic Clin. Pharmacol. Toxicol. 2012; 110 (1): 35–41. DOI: 10.1111/j.1742-7843.2011.00794.x.
30. Eddinger T.J., Meer D.P., Miner A.S., Meehl J., Rovner A.S., Ratz P.H. Potent inhibition of arterial smooth muscle tonic contractions by the selective myosin II inhibitor, blebbistatin. J. Pharmacol. Exp. Ther. 2007; 320 (2): 865–870. DOI: 10.1124/jpet.106.109363.
31. Tanaka Y., Horinouchi T., Koike K. New insights into beta-adrenoceptors in smooth muscle: distribution of receptor subtypes and molecular mechanisms triggering muscle relaxation. Clin. Exp. Pharmacol. Physiol. 2005; 32 (7): 503–514. DOI: 10.1111/j.1440-1681.2005.04222.x.
32. Eckly A.E., Stoclet J.C., Lugnier C. Isoprenaline induces endothelium- independent relaxation and accumulation of cyclic nucleotides in the rat aorta. Eur. J. Pharmacol. 1994; 271 (1): 237–240. DOI: 10.1016/0014-2999(94)90287-9.
33. Scheid C.R., Honeyman T.W., Fay F.S. Mechanism of beta-adrenergic relaxation of smooth muscle. Nature. 1979; 277 (5691): 32–36. DOI: 10.1038/277032a0.
34. Mueller E., van Breemen C. Role of intracellular Ca2+ sequestration in beta- adrenergic relaxation of a smooth muscle. Nature. 1979; 281 (5733): 682–683. DOI: 10.1038/281682a0.
35. Gray D.W., Marshall I. Novel signal transduction pathway mediating endothelium- dependent beta-adrenoceptor vasorelaxation in rat thoracic aorta. Br. J. Pharmacol. 1992; 107 (3): 684–690. DOI: 10.1111/j.1476-5381.1992.tb 14507.x.
36. Graves J., Poston L. Beta-adrenoceptor agonist mediated relaxation of rat isolated resistance arteries: a role for the endothelium and nitric oxide. Br. J. Pharmacol. 1993; 108 (3): 631–637. DOI: 10.1111/j.1476-5381.1993.tb12853.x.
37. Chalon S., Tejura B., Moreno H.Jr., Urae A., Blaschke T.F., Hoffman B.B. Role of nitric oxide in isoprenaline and sodium nitroprusside-induced relaxation in human hand veins. Br. J. Clin. Pharmacol. 1999; 47 (1): 91–98. DOI: 10.1046/j.1365-2125.1999.00863.x.
38. Xiong Z., Sperelakis N., Fenoglio-Preiser C. Isoproterenol modulates the calcium channels through two different mechanisms in smooth-muscle cells from rabbit portal vein. Pflugers Arch. 1994; 428 (2): 105–113. DOI: 10.1007/bf00374847.
39. Walch L., Brink C., Norel X. The muscarinic receptor subtypes in human blood vessels. Therapie. 2001; 56 (3): 223–226. PMID: 11475798.
40. Furchgott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980; 288 (5789): 373–376. DOI: 10.1038/288373a0.
41. Itoh T., Fujiwara T., Kubota Y., Nishiye E., Kuriyama H. Roles of protein kinase C on the mechanical activity of vascular smooth muscles. Am. J. Hypertens. 1990; 3 (8 Pt 2): 216s–219s. DOI: 10.1093/ajh/3.8.216.
Review
For citations:
Sulgin A.A., Sidorova T.N., Sidorov V.Y. Growth and characterization of a tissue-engineered construct from human coronary artery smooth muscle cells. Bulletin of Siberian Medicine. 2020;19(2):85-95. https://doi.org/10.20538/1682-0363-2020-2-85-95