Оптогенетические методы и технологии в решении прикладных медицинских задач
https://doi.org/10.20538/1682-0363-2020-2-195-203
Аннотация
Ключевые слова
Об авторах
Л. Е. СорокинаРоссия
студент
Россия, Республика Крым, 295051, г. Симферополь, бул. Ленина, 5/7
В. И. Петренко
Россия
аспирант
Россия, Республика Крым, 295051, г. Симферополь, бул. Ленина, 5/7
М. В. Субботкин
Россия
студент
Россия, Республика Крым, 295051, г. Симферополь, бул. Ленина, 5/7
А. А. Куланова
Россия
студент
Россия, Республика Крым, 295051, г. Симферополь, бул. Ленина, 5/7
А. С. Кучеренко
Россия
аспирант
Россия, Республика Крым, 295051, г. Симферополь, бул. Ленина, 5/7
А. В. Кубышкин
Россия
д-р мед. наук, профессор, зав. кафедрой общей и клинической патофизиологии
Россия, Республика Крым, 295051, г. Симферополь, бул. Ленина, 5/7
И. И. Фомочкина
Россия
д-р мед. наук, профессор, кафедра общей и клинической патофизиологии
Россия, Республика Крым, 295051, г. Симферополь, бул. Ленина, 5/7
А. Ю. Номеровская
Россия
ассистент, кафедра общей и клинической патофизиологии
Россия, Республика Крым, 295051, г. Симферополь, бул. Ленина, 5/7
С. С. Халилов
Россия
аспирант, кафедра общей физики
Россия, Республика Крым, 295007, г. Симферополь, пр. Академика Вернадского, 4/А
Список литературы
1. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 1971; 233 (39): 149–152. DOI: 10.1038/newbio233149a0.
2. Crick F.H. Thinking about the brain. Sci. Am. 1979; 241 ( 3): 219–232. DOI: 10.1038/scientificamerican0979-219.
3. Boyden E.S., Zhang F., Bamberg E., Nagel G., Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 2005; 8 (9): 1263–1268. DOI: 10.1038/nn1525.
4. Zhang F., Prigge M., Beyrière F., Tsunoda S.P., Mattis J., Yizhar O., Hegemann P., Deisseroth K. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 2008; 11 (6): 631–633. DOI: 10.1038/nn.2120.
5. Deubner J., Coulon P., Diester I. Optogenetic approaches to study the mammalian brain. Curr. Opin. Struct. Biol. 2019; 57: 157–163. DOI: 10.1016/j.sbi.2019.04.003.
6. Dimidschstein J., Chen Q., Tremblay R. et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 2016; 19 (12): 1743–1749. DOI: 10.1038/nn.4430.
7. Fenno L.E., Mattis J., Ramakrishnan C. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat. Methods. 2014; 11 (7): 763–772. DOI: 10.1038/nmeth.2996.
8. Arenkiel B.R., Peca J., Davison I.G. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron. 2007; 54 (2): 205–218. DOI: 10.1016/j.neuron.2007.03.005.
9. Zeng H., Madisen L. Mouse transgenic approaches in optogenetics. Prog. Brain Res. 2012; 196: 193–213. DOI: 10.1016/B978-0-444-59426-6.00010-0.
10. Park J.E., Silva A.C. Generation of genetically engineered non-human primate models of brain function and neurological disorders. Am. J. Primatol. 2019; 81 (2): e22931. DOI: 10.1002/ajp.22931.
11. Bitzenhofer S.H., Ahlbeck J., Wolff A. et al. Layer-specific optogenetic activation of pyramidal neurons causes beta-gamma entrainment of neonatal networks. Nat. Commun. 2017; 8: 14563. DOI: 10.1038/ncomms14563.
12. Adesnik H., Scanziani M. Lateral competition for cortical space by layer-specific horizontal circuits. Nature. 2010; 464 (7292): 1155–1160. DOI: 10.1038/nature08935.
13. Han X., Chow B.Y., Zhou H., Klapoetke N.C., Chuong A., Rajimehr R., Yang A., Baratta M.V., Winkle J., Desimone R., Boyden E.S. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 2011; 5: 18. DOI: 10.3389/fnsys.2011.00018.
14. Jing M., Zhang P., Wang G. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 2018; 36 (8): 726–737. DOI: 10.1038/nbt.4184.
15. Srinivasan S., Hosokawa T., Vergara P. et al. Miniaturized microscope with flexible light source input for neuronal imaging and manipulation in freely behaving animals. Biochem. Biophys. Res. Commun. 2019; 517 (3): 520–524. DOI: 10.1016/j.bbrc.2019.07.082.
16. Hägglund M., Borgius L., Dougherty K.J., Kiehn O. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat. Neurosci. 2010; 13 (2): 246–252. DOI: 10.1038/nn.2482.
17. Farmer D.G., Pracejus N., Dempsey B. et al. On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat. J. Physiol. 2019; 597 (13): 3407–3423. DOI: 10.1113/JP277661.
18. Miterko L.N., Baker K.B. et al. Consensus paper: experimental neurostimulation of the cerebellum. Cerebellum. 2019; 18 (6): 1064–1097. DOI: 10.1007/s12311-019-01041-5.
19. Liu K., Wang L. Optogenetics: Therapeutic spark in neuropathic pain. Bosn. J. Basic. Med. Sci. 2019; 19 (4): 321–327. DOI: 10.17305/bjbms.2019.4114.
20. Kastanenka K.V., Calvo-Rodriguez M., Hou S.S. et al. Frequency-dependent exacerbation of Alzheimer’s disease neuropathophysiology. Sci. Rep. 2019; 9 (1): 8964. DOI: 10.1038/s41598-019-44964-z.
21. Krook-Magnuson E., Armstrong C., Oijala M., Soltesz I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 2013; 4: 1376. DOI: 10.1038/ncomms2376.
22. Deisseroth K. Optogenetics and psychiatry: applications, challenges, and opportunities. Biol. Psychiatry. 2012; 71 (12): 1030–1032. DOI: 10.1016/j.biopsych.2011.12.021.
23. Shirai F., Hayashi-Takagi A. Optogenetics: Applications in psychiatric research. Psychiatry Clin. Neurosci. 2017; 71 (6): 363–372. DOI: 10.1111/pcn.12516.
24. Tye K.M., Mirzabekov J.J., Warden M.R. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013; 493 (7433): 537–541. DOI: 10.1038/nature11740.
25. Bass C.E., Grinevich V.P., Gioia D. et al. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration. Front. Behav. Neurosci. 2013; 7: 173. DOI: 10.3389/fnbeh.2013.00173.
26. Burguière E., Monteiro P., Feng G., Graybiel A.M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science. 2013; 340 (6137): 1243–1246. DOI: 10.1126/science.1232380.
27. Henriksen B.S., Marc R.E., Bernstein P.S. Optogenetics for retinal disorders. J. Ophthalmic. Vis. Res. 2014; 9 (3): 374–372. DOI:10.4103/2008-322X.143379.
28. Berry M.H., Holt A., Salari A. et al. Restoration of high-sensitivity and adapting vision with a cone opsin. Nat. Commun. 2019; 10 (1): 1221. DOI: 10.1038/s41467-019-09124-x.
29. Ganjawala T.H., Lu Q., Fenner M.D., Abrams G.W., Pan Z.H. Improved CoChR variants restore visual acuity and contrast sensitivity in a mouse model of blindness under ambient light сonditions. Mol. Ther. 2019; 27 (6): 1195–1205. DOI: 10.1016/j.ymthe.2019.04.002.
30. Hernandez V.H., Gehrt A., Jing Z. et al. Optogenetic stimulation of the auditory nerve. J. Vis. Exp. 2014; (92): e52069/ DOI: 10.3791/52069.
31. Hernandez V.H., Gehrt A., Reuter K. et al. Optogenetic stimulation of the auditory pathway. J. Clin. Invest. 2014; 124 (3): 1114–1129. DOI: 10.1172/JCI69050.
32. Wrobel C., Dieter A., Huet A. et al. Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils. Sci. Transl. Med. 2018; 10 (449): eaao4496. DOI: 10.1126/scitranslmed.aao0540.
33. Ye H., Daoud E., Baba M., Peng R.W., Fussenegger M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science. 2011; 332 (6037): 1565–1568. DOI: 10.1126/science.1203535.
34. Shao J., Xue S., Yu G. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med. 2017; 9 (387): eaal2298. DOI: 10.1126/scitranslmed.aal2298.
35. Yu L., Zhou L., Cao G. et al. Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias. J. Am. Coll. Cardiol. 2017; 70 (22): 2778–2790. DOI: 10.1016/j.jacc.2017.09.1107.
36. Majumder R., Feola I., Teplenin A.S., de Vries A.A., Panfilov A.V., Pijnappels D.A. Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system. Elife. 2018; 7: e41076. DOI: 10.7554/eLife.41076.
37. Cheng Y., Li H., Lei H. et al. Flexible and precise control of cardiac rhythm with blue light. Biochem. Biophys. Res. Commun. 2019; 514 (3): 759–764. DOI: 10.1016/j.bbrc.2019.05.035.
38. Quiñonez Uribe R.A., Luther S., Diaz-Maue L., Richter C. Energy-reduced arrhythmia termination using global photostimulation in optogenetic murine hearts. Front. Physiol. 2018; 9: 1651. DOI: 10.3389/fphys.2018.01651.
39. Zhang H., Cohen A.E. Optogenetic approaches to drug discovery in neuroscience and beyond. Trends Biotechnol. 2017; 35 (7): 625–639. DOI: 10.1016/j.tibtech.2017.04.002.
40. Kiełbus M., Czapiński J., Odrzywolski A. et al. Optogenetics in cancer drug discovery. Expert Opin. Drug Discov. 2018; 13 (5): 459–472. DOI: 10.1080/17460441.2018.1437138.
41. Sahel J.-A., Roska B. Gene therapy for blindness. Ann. Rev. Neurosci. 2013; 36: 467–488. DOI: 10.1146/annurev-neuro-062012-170304.
Рецензия
Для цитирования:
Сорокина Л.Е., Петренко В.И., Субботкин М.В., Куланова А.А., Кучеренко А.С., Кубышкин А.В., Фомочкина И.И., Номеровская А.Ю., Халилов С.С. Оптогенетические методы и технологии в решении прикладных медицинских задач. Бюллетень сибирской медицины. 2020;19(2):195-203. https://doi.org/10.20538/1682-0363-2020-2-195-203
For citation:
Sorokina L.E., Petrenko V.I., Subbotkin M.V., Kulanova A.A., Kucherenko A.S., Kubyshkin A.V., Fomochkina I.I., Nomerovskaya A.Yu., Halilov S.I. Optogenetic methods and technologies in solving applied medical problems. Bulletin of Siberian Medicine. 2020;19(2):195-203. https://doi.org/10.20538/1682-0363-2020-2-195-203