The study of platelet reaction on a-C:H:SiOx coatings obtained via plasma enhanced chemical vapor deposition with bipolar bias voltage
https://doi.org/10.20538/1682-0363-2020-3-15-21
Abstract
Aim. To study platelet adhesion to a-C:H:SiOx film on titanium in an in vitro experiment to evaluate its antithrombogenic potential.
Materials and methods. Thin (less than 1 μm) a-C:H:SiOx films were deposited on VT-6 titanium plates with a size of 10 × 10 mm2 and a thickness of 0.2 mm using a vacuum ion-plasma unit using pulsed bipolar bias. The surface roughness was evaluated according to GOST 2789-73 using an atomic force microscope. The test samples were cultured at 37 °C for 30 min in platelet-rich human blood plasma, prepared for scanning electron microscopy, after which the distribution density of blood plates adhering to the test coating was calculated.
Results. With the same roughness index of the studied a-C:H:SiOx samples, the film decreased 116 times (in comparison with untreated titanium) the platelet count per 1 mm2 of the surface.
Conclusion. The deposition of a-C:H:SiOx thin film on the surface of VT-6 titanium alloy by PACVD method using pulsed bipolar bias significantly reduces the distribution density of platelets in comparison with an untreated metal surface. In vitro data suggest a significant antithrombogenic potential of this type of coating on the surface of devices in contact with blood.
About the Authors
M. O. ZhulkovRussian Federation
15, Rechkunovskaya Str., Novosibirsk, 630055, Russian Federation
2/3 Akademichesky Av., Tomsk, 634055, Russian Federation
A. S. Grenadyorov
Russian Federation
2/3 Akademichesky Av., Tomsk, 634055, Russian Federation
D. S. Korneev
Russian Federation
3, Koptug Av., Novosibirsk, 630090, Russian Federation
H. A. Agaeva
Russian Federation
15, Rechkunovskaya Str., Novosibirsk, 630055, Russian Federation
A. M. Chernyavsky
Russian Federation
15, Rechkunovskaya Str., Novosibirsk, 630055, Russian Federation
2/3 Akademichesky Av., Tomsk, 634055, Russian Federation
I. A. Khlusov
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation
30, Lenin Av., Tomsk, 634050, Russian Federation
References
1. li N., Kousar Y., Okpalugo T.I., Singh V., Pease M., Ogwu A.A., Jackson M. J. Human micro-vascular endothelial cell seeding on Cr-DLC thin films for mechanical heart valve applications. Thin. Solid Films. 2006; 515 (1): 59–65. DOI: 10.1361/105994906X95931.
2. Goodman S. L., Tweden K. S., Albrecht R. M. Platelet interaction with pyrolytic carbon heart valve leaflets. Journal of Biomedical Materials Research: An Official Journal of the Society for Biomaterials and the Japanese Society for Biomaterials. 1996; 32 (2): 249–258. DOI: 10.1002/(SICI)1097-4636(199610)32:2<249::AID-JBM15>3.0.CO;2-E.
3. Love C.A., Cook R.B., Harvey T.J., Dearnley P.A., Wood R.J.K. Diamond like carboncoatings for potential application in biological implants – a review. Tribology International. 2013; 63 (2013): 141–150. DOI: 10.1016/j.msec.2013.02.047.
4. Dearnaley G., Arps J.H. Biomedical applications of diamond-like carbon (DLC) coatings: a review. Surface & Coatings Technology. 2005; 200 (7): 2518–2524. DOI:10.1002/jbm.b.30768.
5. Kwok S. C. H., Wang J., Chu P. K. Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films. Diamond and Related Materials. 2005; 14 (1): 78–85. DOI: 10.1016/j.diamond.2004.07.019.
6. Sheeja D., Tay B. K., Nung L. N. Tribological characterization of surface modified UHMWPE against DLC-coated Co–Cr–Mo. Surface & Coatings Technology. 2005; 190 (2-3): 231–237. DOI: 10.1016/j.surfcoat.2004.02.051.
7. Bociaga D., Sobczyk-Guzenda A., Komorowski P., Balcerzak J., Jastrzebski K., Przybyszewska K., Kaczmarek A. Surface Characteristics and biological evaluation of si-dlc coatings fabricated using magnetron sputtering method on Ti6Al7Nb substrate. Nanomaterials. 2019; 9 (6): 812. DOI: 10.3390/nano9060812.
8. Grenadyorov A.S., Solovyev А.А., Oskomov K.V., Rabotkin S.V., Elgin Y.I., Sypchenko V.S., Ivanova N.M. Effect of substrate bias and substrate/plasma generator distance on properties of a-C:H:SiOx films synthesized by PACVD. Thin. Solid Films. 2019; 669: 253–261. DOI: 10.1016/j.tsf.2018.11.005.
9. Lopes F. S., Oliveira J. R., Milani J., Oliveira L. D., Machado J. P. B., Trava-Airoldi V. J., Marciano F. R. Biomineralized diamond-like carbon films with incorporated titanium dioxide nanoparticles improved bioactivity properties and reduced biofilm formation. Materials Science and Engineering: C. 2017; 81: 373–379. DOI: 10.1016/j.msec.2017.07.043.
10. Wen F., Liu J., Xue J. The Studies of Diamond-Like Carbon Films as Biomaterials. Colloid and Surface Science. 2017; 2 (3); 81. DOI: 10.11648/j.css.20170203.11.
11. Avtandilov G.G. Medical morphometry. Guide. Moscow: Medicine, 1990: 384 (in Russ.).
12. Grenadyorov A.S., Solovyev А.А., Oskomov K.V., Onischenko S.A., Chernyavskiy A.M., Zhulkov M.O., Kaichev V.V. Modifying the surface of a titanium alloy with an electron beam and a-C:H:SiOx coating deposition to reduce hemolysis in cardiac assist devices. Surface and Coatings Technology. 2020; 381: 125113. DOI: 10.1016/j.surfcoat.2019.125113.
13. Bociaga D., Kaminska M., Sobczyk-Guzenda A., Jastrzebski K., Swiatek L., Olejnik A. Surface properties and biological behaviour of Si-DLC coatings fabricated by a multi-target DC–RF magnetron sputtering method for medical applications. Diamond and Related Materials. 2016; 67: 41–50. DOI: 10.1016/j.diamond.2016.01.025.
14. Yang P., Huang N., Leng Y.X., Chen J.Y., Fu R.K.Y., Kwok S.C.H., Chu P. K. Activation of platelets adhered on amorphous hydrogenated carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition (PIII-D). Biomaterials. 2003; 24 (17): 2821–2829. DOI: 10.1016/s0142-9612(03)00091-7.
15. Kokov L.S., Kapranov S.A., Dolgushin B.I., Troitsky A.V., Protopopov A.V., Martov A.G. Vascular and intraorgan stenting. M.: Publishing house “Grail”, 2003: 384 (in Russ.).
16. Sawyer P. M., Janczuk B., Bruque J. Materials with negative charge surface and their blood compatibility. Tasaio. 1964; 10 (3): 316–321.
17. Ikada Y. Blood-compatible polymers. Polymers in Medicine. Springer, Berlin, Heidelberg, 1984: 140.
18. Pichugin V.F., Surmeneva M.A., Surmenev R.A., Khlusov I.A., Epple M. Investigation of the physicochemical and biological properties of calcium phosphate coatings created by RF-magnetron sputtering of silicon-substituted hydroxyapatite. Surface. X-ray, Synchrotron and Neutron Studies. 2011; 9: 54–61 (in Russ.). DOI: 10.1134/S1027451011090138.
Review
For citations:
Zhulkov M.O., Grenadyorov A.S., Korneev D.S., Agaeva H.A., Chernyavsky A.M., Khlusov I.A. The study of platelet reaction on a-C:H:SiOx coatings obtained via plasma enhanced chemical vapor deposition with bipolar bias voltage. Bulletin of Siberian Medicine. 2020;19(3):15-21. https://doi.org/10.20538/1682-0363-2020-3-15-21