Preview

Bulletin of Siberian Medicine

Advanced search

Aberrations of the number of copies (CNA) in the genome of luminal B breast tumor

https://doi.org/10.20538/1682-0363-2020-3-22-28

Abstract

Aim. To describe the CNA (Copy Number Aberration) landscape of luminal B breast tumor before treatment.

Materials and methods. The study included 100 patients with breast cancer (BC) of luminal B subtype for which a biopsy of the tumor material was performed prior to neoadjuvant chemotherapy (NAC). The tumor DNA was examined using a CytoScan HD Array microarray (Affymetrix, USA). The obtained microarray data were correlated with NAC efficacy.

Results. The study showed that loci 1q32.1-32.3, 1q41-42.2, and 8q24.21 had the highest frequency of  amplifications (in more than 65% of patients). The highest deletion frequency (in more than 60% of patients) was found in loci 16q21, 16q22.1, 16q23.1-24.1, 17p13.1, and 17p12. Trisomy was most often observed in chromosomes 7, 8, 12, and 17, and monosomy in chromosomes 3, 4, 9, 11, 18, and X-chromosomes. The CNA landscape of luminal B subtype breast tumors is different from triple-negative breast cancer. The largest difference in the frequency of amplifications between patients with an objective response to NAC and patients with no response to NAC was shown in 1q24.2-42.2 loci (46%), and the largest difference in the frequency of deletions (more than 30%) between groups was in regions 6q16. 3, 11p15.4, 11q23.1, and 16q22.2-22.3. These loci can be considered potential predictive markers.

Conclusion. The research determined loci with the highest amplification and deletion frequencies for luminal B breast cancer. Potential predictive markers for the given molecular subtype were identified.

About the Authors

M. K. Ibragimova
Саnсеr Rеsеаrсh Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation
5, Kooperativny Str., 634009, Tomsk, Russian Federation


M. M. Tsyganov
Саnсеr Rеsеаrсh Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation
5, Kooperativny Str., 634009, Tomsk, Russian Federation


E. M. Slonimskaya
Saint-Petersburg State University
Russian Federation
7/9, University Emb., 199034, Saint-Petersburg, Russian Federation


N. V. Litviakov
Саnсеr Rеsеаrсh Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation
5, Kooperativny Str., 634009, Tomsk, Russian Federation


References

1. Garraway L.A., Lander E.S. Lessons from the cancer genome. Cell. 2013; 153 (1): 17–37. DOI: 10.1016/j.cell.2013.03.002.

2. Abbas T., Keaton M.A., Dutta A. Genomic instability in cancer. Cold Spring Harb. Perspect. Biol. 2013; 5 (3): a012914. DOI: 10.1101/cshperspect.a012914.

3. Xu Y., Duan Mu H., Chang Z., Zhang S., Li Z., Li Z., Liu Y., Li K., Qiu F., Li X. The application of gene co-expression network reconstruction based on CNVs and gene expression microarray data in breast cancer. Molecular Biology Reports. 2012; 39 (2): 1627–1637. DOI: 10.1007/s11033-011-0902-3.

4. Kaveh F., Baumbusch L.O., Nebdal D., Borresen-Dale A.-L., Lingjærde O.C., Edvardsen H., Kristensen V.N., Solvang H.K. A systematic comparison of copy number alterations in four types of female cancer. BMC Cancer. 2016; 16 (1): 913. DOI: 10.1186/s12885-016-2899-4.

5. Iddawela M., Rueda O., Eremin J., Eremin O., Cowley J., Earl H.M., Caldas C. Integrative analysis of copy number and gene expression in breast cancer using formalin-fixed paraffin-embedded core biopsy tissue: a feasibility study. BMC Genomics. 2017; 18 (1): 526. DOI: 10.1186/s12864-017-3867-3.

6. Grade M., Difilippantonio M.J., Camps J. Patterns of chromosomal aberrations in solid tumors. Chromosomal Instability in Cancer Cells. 2015; 200: 115–142. DOI: 10.1007/978-3-319-20291-4_6.

7. Goh J.Y., Feng M., Wang W., Oguz G., Yatim S.M.J.M., Lee P.L.,Bao Y., Lim T.H., Wang P., Tam W.L., Kodahl A.R., Lyng M.B., Sarma S., Lin S.Y., Lezhava A., Yap Y.S., Lim A.S.T., Hoon D.S.B., Ditzel H.J., Lee S.C., Tan E.Y., Yu Q. Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence. Nature Medicine. 2017; 23: 1319–1330. DOI: 10.1038/nm.4405.

8. Gao R., Davis A., McDonald T.O., Sei E., Shi X., Wang Y., Tsai P.-C., Casasent A., Waters J., Zhang H., Meric-Bernstam F., Michor F., Navin N.E. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nature Genetics. 2016; 48: 1119–1130. DOI: 10.1038/ng.3641.

9. Burstein M.D., Tsimelzon A., Poage G.M., Covington K.R., Contreras A., Fuqua S.A.W., Savage M.I., Osborne C.K., Hilsenbeck S.G., Chang J.C., Mills G.B., Lau C.C., Brown P.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clinical Cancer Research. 2015; 21 (7): 1688–1699. DOI: 10.1158/1078-0432.CCR-14-0432.

10. Kazantseva P.V., Tsyganov M.M., Slonimskaya E.M., Litvyakov N.V., Cherdyntseva N.V., Ibragimova M.K., Doroshenko A.V., Tarabanovskaya N.A., Patalyak S.V. Molecular-genetic markers of response to neoadjuvant chemotherapy with anthracyclines in breast cancer patients. Siberian Journal of Oncology. 2016; 15 (2): 29–35. DOI: 10.21294/1814-4861-2016-15-2-29-35.


Review

For citations:


Ibragimova M.K., Tsyganov M.M., Slonimskaya E.M., Litviakov N.V. Aberrations of the number of copies (CNA) in the genome of luminal B breast tumor. Bulletin of Siberian Medicine. 2020;19(3):22-28. https://doi.org/10.20538/1682-0363-2020-3-22-28

Views: 660


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)