The role of galectin-1 and galectin-3 in the mechanisms of T-cell immune response dysregulation in colon cancer
https://doi.org/10.20538/1682-0363-2020-3-76-82
Abstract
The aim of the study was to characterize the features of the subpopulation composition and cytokine-secretory activity of T lymphocytes (Th1, Th17 and Treg) in relation to the concentration of galectin-1 and galectin-3 in the blood of patients with colon cancer.
Materials and methods. A total of 26 patients diagnosed with colon cancer were examined. The study material included whole peripheral blood, blood plasma, and supernatants of suspension cultures of mononuclear leukocytes. Lymphocytes isolated from blood were typed by flow cytometry using monoclonal antibodies. The content of galectin-1 and galectin-3 (in blood plasma) and IFNγ, IL-17A, and TGFβ (in supernatants of mononuclear leukocyte culture in vitro) were determined by enzyme-linked immunosorbent assay. The results obtained were analyzed by statistical methods.
Results. In patients with colon cancer, a significant increase in the concentration of galectin-1 and galectin-3 in the blood plasma was found, which was associated with a decrease in the content of CD4+T-bet+ Th1 lymphocytes, CD4+RORC2+ Th17 lymphocytes in the blood and in vitro hyposecretion of IL-17. At the same time, positive correlations were revealed between the concentration of galectin-1 and galectin-3, the content of CD4+FoxP3+ Treg cells in the blood, and the secretion of TGFβ by mononuclear leukocytes in vitro.
Conclusion. In colon cancer, increased levels of galectin-1 and galectin-3 in the blood are associated with quantitative deficiency and inhibited secretory activity of effector T lymphocytes and activation of the immunosuppressive functions of regulatory T cells. These results suggest a negative role of galectin 1 and galectin 3 in the mechanisms of regulation of the T cell immune response in colon cancer.
About the Authors
V. S. PoletikaRussian Federation
2, Mosсow Trakt, Tomsk, 634055, Russian Federation
Yu. V. Kolobovnikova
Russian Federation
2, Mosсow Trakt, Tomsk, 634055, Russian Federation
O. I. Urazova
Russian Federation
2, Mosсow Trakt, Tomsk, 634055, Russian Federation
40, Lenina Av., Tomsk, 634050, Russian Federation
O. A. Vasileva
Russian Federation
2, Mosсow Trakt, Tomsk, 634055, Russian Federation
A. I. Dmitrieva
Russian Federation
115, Lenina Av., Tomsk, 634050, Russian Federation
K. I. Yankovich
Russian Federation
115, Lenina Av., Tomsk, 634050, Russian Federation
V. V. Novitsky
Russian Federation
2, Mosсow Trakt, Tomsk, 634055, Russian Federation
40, Lenina Av., Tomsk, 634050, Russian Federation
L. M. Ryabova
Russian Federation
115, Lenina Av., Tomsk, 634050, Russian Federation
M. Yu. Grishchenko
Russian Federation
115, Lenina Av., Tomsk, 634050, Russian Federation
References
1. Vesely M.D., Kershaw M.H., Schreiber R.D., Smyth M.J. Natural innate and adaptive immunity to cancer. Annu Rev. Immunol. 2011; 29: 235–271. DOI: 10.1146/annurev-immunol-031210-101324.
2. Tosolini M., Kirilovsky A., Mlecnik B., Fredriksen T., Mauger S., Bindea G., Berger A., Bruneval P., Fridman W.H., Pagès F., Galon J. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res. 2011; 71 (4): 1263–1271. DOI: 10.1158/0008-5472.CAN-10-2907.
3. Noguchi A., Kaneko T., Naitoh K., Masashi S., Iwai K., Maekawa R., Kamigaki T., Goto S. Impaired and imbalanced cellular immunological status assessed in advanced cancer patients and restoration of the T cell immune status by adoptive T-cell immunotherapy. International Immunopharmacology. 2014; 18 (1): 90–97. DOI:10.1016/j.intimp.2013.11.009.
4. Smyth M.J., Dunn G.P., Schreiber R.D. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol. 2006; 90: 1–50. DOI: 10.1016/S0065-2776(06)90001-7.
5. Chang W., Tsai M., Kuo P., Hung J. Role of galectins in lung cancer. Oncol. Lett. 2017; 14 (5): 5077–5084. DOI: 10.3892/ol.2017.6882.
6. Orozco C.A., Martinez-Bosch N., Guerrero P.E., Vinaixa J., Dalotto-Moreno T., Iglesias M., Moreno M., Djurec M., Poirier F., Gabius H.J., Fernandez-Zapico M.E., Hwang R.F., Guerra C., Rabinovich G.A., Navarro P. Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc. Natl. Acad. Sc.i USA. 2018: 115 (16): 3769–3778. DOI: 10.1073/pnas.1722434115.
7. Chou F., Chen H., Kuo C., Sytwu H. Role of Galectins in Tumors and in Clinical Immunotherapy. Int. J. Mol. Sci. 2018; 19 (2): 430. DOI: 10.3390/ijms19020430.
8. Kolobovnikova Yu.V., Dmitrieva A.I., Yankovich K.I., Vasileva O.A., Purlik I.L., Novitsky V.V., Urazova O.I., Khardikova S.. Galectin-1-mediated expression of cell cycle regulating proteins and growth factors in gastric cancer. Bulletin of Siberian Medicine. 2017; 16 (4): 165–172. DOI: 10.20538/1682-0363-2017-4-165-172 (in Russ.).
9. Cedeno-Laurent F., Opperman M., Barthel S.R., Kuchroo V.K., Dimitroff C.J. Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. J. Immunol. 2012; 188 (7): 3127–3137. DOI: 10.4049/jimmunol.1103433.
10. Cedeno-Laurent F., Watanabe R., Teague J.E., Kupper T.S., Clark R.A., Dimitroff C.J. Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patients with leukemic cutaneous T-cell lymphoma. Blood. 2012; 119 (15): 3534–3538. DOI: 10.1182/blood-2011-12-396457.
11. Fermin L.A., Chen H.Y., Wan L., Wu S.Y., Yu J.S., Huang A.C., Miaw S.C., Hsu D.K., Wu-Hsieh B.A., Liu F.T. Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines. Am. J. Pathol. 2013; 183 (4): 1209–1222. DOI: 10.1016/j.ajpath.2013.06.017.
12. Radosavljevic G., Jovanovic I., Majstorovic I., Mitrovic M., Lisnic V.J., Arsenijevic N., Jonjic S., Lukic M.L. Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity. Clin. Exp. Metastasis. 2011; 28 (5): 451–462. DOI: 10.1007/s10585-011-9383-y.
13. Kovács-Sólyom F., Blaskó A., Fajka-Boja R., Katona R.L., Végh L., Novák J., Szebeni G.J., Krenács L., Uher F., Tubak V., Kiss R., Monostori E. Mechanism of tumor cell-induced T-cell apoptosis mediated by galectin-1. Immunol. Lett. 2010; 127 (2): 108–118. DOI: 10.1016/j.imlet.2009.10.003.
14. Rabinovich G.A., Conejo-García J.R. Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways. J. Mol. Biol. 2016; 428 (16): 3266–3281. DOI: 10.1016/j.jmb.2016.03.021.
15. Van den Brûle F., Califice S., Castronovo V. Expression of galectins in cancer: a critical review. Glycoconj. J. 2002; 19 (7-9): 537–542. DOI: 10.1023/B:GLYC.0000014083.48508.6a.
16. Thijssen V.L., Heusschen R., Caers J., Griffioen A.W. Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim. Biophys. Acta. 2015; 1855 (2): 235–247. DOI: 10.1016/j.bbcan.2015.03.003.
17. Kolobovnikova Yu.V., Dmitrieva A.I., Yankovich K.I., Vasileva O.A., Purkik I.L., Poletika V.S., Novitsky V.V., Urazova O.I. Expression of galectin-1 and galectin-3 in gastric and colon cancer with tissue eosinophilia. Bulletin of Experimental Biology and Medicine. 2018; 165 (2): 220–223 (in Russ.).
18. Wu K.L., Chen H.H., Pen C.T., Yeh W.L., Huang E.Y., Hsiao C.C., Yang K.D. Circulating Galectin-1 and 90K/Mac2BP Correlated with the Tumor Stages of Patients with Colorectal Cancer. Biomed Res Int. 2015; 2015:306964. DOI: 10.1155/2015/306964.
19. Hittelet A., Legendre H., Nagy N., Bronckart Y., Pector J.C., Salmon I., Yeaton P., Gabius H.J., Kiss R., Camby I. Upregulation of galectins-1 and -3 in human colon cancer and their role in regulating cell migration. Int. J. Cancer. 2003; 103 (3): 370–379. DOI: 10.1002/ijc.10843.
20. Endo K., Kohnoe S., Tsujita E., Watanabe A., Nakashima H., Baba H., Maehara Y. Galectin-3 expression is a potent prognostic marker in colorectal cancer. Anticancer Res. 2005; 25 (4): 3117–3121.
21. Okada K., Shimura T., Suehiro T., Mochiki E., Kuwano H. Reduced galectin-3 expression is an indicator of unfavorable prognosis in gastric cancer. Anticancer Res. 2006; 26 (2B): 1369–1376.
22. Tsuboi K., Shimura T., Masuda N., Ide M., Tsutsumi S., Yamaguchi S., Asao T., Kuwano H. Galectin-3 expression in colorectal cancer: relation to invasion and metastasis. Anticancer Res. 2007; 27 (4B): 2289–2296.
23. Kennedy R., Celis E. Multiple roles for CD4+ T cells in anti‐tumor immune responses. Immunological Reviews. 2008; 222 (1): 129–144. DOI: 10.1111/j.1600-065X.2008.00616.x.
24. Ling A., Lundberg I.V., Eklöf V., Wikberg M.L., Öberg Å., Edin S, Palmqvist R. The infiltration, and prognostic importance, of Th1 lymphocytes vary in molecular subgroups of colorectal cancer. J. Pathol. Clin. Res. 2016; 2 (1): 21–31. DOI: 10.1002/cjp2.31.
25. De Simone V., Pallone F., Monteleone G., Stolfi C. Role of TH17 cytokines in the control of colorectal cancer. Oncoimmunology. 2013; 2 (12): e26617. DOI: 10.4161/onci.26617.
26. Amicarella F., Muraro M.G., Hirt C., Cremonesi E., Padovan E., Mele V., Governa V., Han J., Huber X., Droeser R.A., Zuber M., Adamina M., Bolli M., Rosso R., Lugli A., Zlobec I., Terracciano L., Tornillo L., Zajac P., Eppenberger-Castori S., Trapani F., Oertli D., Iezzi G. Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer. Gut. 2017; 66 (4): 692–704. DOI: 10.1136/gutjnl-2015-310016.
27. Bonertz A., Weitz J., Pietsch D.H., Rahbari N.N., Schlude C., Ge Y., Juenger S., Vlodavsky I., Khazaie K., Jaeger D., Reissfelder C., Antolovic D., Aigner M., Koch M., Beckhove P. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J. Clin. Invest. 2009; 119 (11): 3311–3321. DOI: 10.1172/JCI39608.
28. Vasileva O.A., Prokhorenko T.S., Zima A.P., Novitsky V.V. The influence of galectins on differentiation and functional activity of Th lymphocytes in vitro. Medical Immunology. 2015; 17 (5): 14 (in Russ.).
29. Toscano M.A., Bianco G.A., Ilarregui J.M., Croci D.O., Correale J., Hernandez J.D., Zwirner N.W., Poirier F., Riley E.M., Baum L.G., Rabinovich G.A. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 2007; 8 (8): 825– 834. DOI: 10.1038/ni1482.
30. Vasileva O.A., Yakushina V.D., Ryazantseva N.V., Novitsky V.V., Tashireva L.A., Starikova E.G., Zima A.P., Prokhorenko T.S., Krasnova Yu.V., Nebesnaya I.S. Regulation of expression of transcription factor genes of CD4+ T lymphocyte differentiation by galectin-3 in vitro. Molecular Biology. 2013; 47 (6): 1004–1010. DOI: 10.7868/S0026898413060165 (in Russ.).
31. MacKinnon A.C., Gibbons M.A., Farnworth S.L., Leffler H., Nilsson U.J., Delaine T., Simpson A.J., Forbes S.J., Hirani N., Gauldie J., Sethi T. Regulation of Transforming Growth Factor-β1–driven Lung Fibrosis by Galectin-3. Am. J. Respir. Crit. Care Med. 2012; 185 (5): 537–546. DOI: 10.1164/rccm.201106-0965OC.
Review
For citations:
Poletika V.S., Kolobovnikova Yu.V., Urazova O.I., Vasileva O.A., Dmitrieva A.I., Yankovich K.I., Novitsky V.V., Ryabova L.M., Grishchenko M.Yu. The role of galectin-1 and galectin-3 in the mechanisms of T-cell immune response dysregulation in colon cancer. Bulletin of Siberian Medicine. 2020;19(3):76-82. https://doi.org/10.20538/1682-0363-2020-3-76-82