The content of hypoxia-inducible factors and mediators of immunosuppression in the blood in diseases associated with hypoxia
https://doi.org/10.20538/1682-0363-2020-3-105-112
Abstract
The aim of the study was to identify general patterns and features of changes in the content of hypoxia-inducible factors-1 and -2 in association with an imbalance of cytokines (IL-10, IL-13, galectin-2 and -9, IFN-gamma) in the blood in diseases associated with hypoxia.
Materials and methods. We examined 25 patients with coronary heart disease (CHD) with heart failure II-III according to NYHA, 16 patients with chronic obstructive pulmonary disease (COPD) without exacerbation, 16 patients with infiltrative pulmonary tuberculosis (TB) before anti-TB therapy, and 18 relatively healthy donors. Plasma concentrations of HIF-1alpha, HIF-2alpha, IL-10, IL-13, galectins-2 and -9, and IFN-gamma were determined by enzyme-linked immunosorbent assay (ELISA).
Results. Positive outcomes of quantity determination of HIF-2alpha in the blood (24.00 ± 8.54 %, 75.00 ± 10.83%, 43.75 ± 12.40% of patients, respectively, against «zero» values in healthy donors) and also signs of immunosuppression at normal plasma concentrations of HIF-1alpha were determined in diseases associated with chronic hypoxia (in patients with CHD, COPD, TB). Immunological insufficiency in CHD and TB is caused by a deficiency of IFN-gamma and galectin-2 in association with an excess of galectin-9 (in patients with CHD 1.10 [0.52; 2.60] pg/ml p = 0.038) or IL-13 (in patients with TB 0.81 [0.79; 1.40] pg/ml, p = 0.043), and in patients with COPD it is caused by a surplus of galectin-9 and IL-13 (8.50 [3.96; 15.00] pg/ml, p = 0.001 and 2.62 [1.20; 7.58] pg/ml, p = 0.002, respectively) at normal concentrations of IFN-gamma and galectin-2. The content of IL-10 in the blood tends to increase in CHD and COPD.
Conclusion. In patients with CHD, COPD and TB, chronic hypoxia is associated with immunosuppression mediated by an imbalance of IL-10, IL-13, IFN-gamma, galectins (2 and 9) in the blood and the secretion of HIF-2alpha, which has the property to stimulate the differentiation of M2-macrophages synthesizing anti-inflammatory cytokines.
Keywords
About the Authors
S. P. ChumakovaRussian Federation
2, Moscow Тrakt, Tomsk, 634055, Russian Federation
O. I. Urazova
Russian Federation
2, Moscow Тrakt, Tomsk, 634055, Russian Federation
40, Lenina Av., Tomsk, 634050, Russian Federation
M. V. Vins
Russian Federation
2, Moscow Тrakt, Tomsk, 634055, Russian Federation
V. M. Shipulin
Russian Federation
2, Moscow Тrakt, Tomsk, 634055, Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation
A. S. Pryakhin
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation
E. B. Bukreeva
Russian Federation
2, Moscow Тrakt, Tomsk, 634055, Russian Federation
A. A. Bulanova
Russian Federation
2, Moscow Тrakt, Tomsk, 634055, Russian Federation
A. P. Koshel
Russian Federation
2, Moscow Тrakt, Tomsk, 634055, Russian Federation
3, Nakhimova Str., Tomsk, 634045, Russian Federation
V. V. Novitsky
Russian Federation
2, Moscow Тrakt, Tomsk, 634055, Russian Federation
40, Lenina Av., Tomsk, 634050, Russian Federation
References
1. Koh M.Y., Powis G. Passing the baton: the HIF switch. Trends Biochem. Sci. 2012; 37 (9): 364–72. DOI: 10.1016/j.tibs.2012.06.004.
2. Wan D.Y., Zhang Z., Yang H.H. Cardioprotective effect of miR-214 in myocardial ischemic postconditioning by down-regulation of hypoxia inducible factor 1, alpha subunit inhibitor. Cell Mol. Biol. (Noisy-le-grand). 2015; 61 (2): 1–6.
3. Kang J.G., Sung H.J., Amar M.J., Pryor M., Remaley A.T., Allen M.D., Noguchi A.C., Springer D.A., Kwon J., Chen J., Park J.H., Wang P.Y., Hwang P.M. Low ambient oxygen prevents atherosclerosis. J. Mol. Med. (Berl.). 2016; 94 (3): 277–86. DOI: 10.1007/s00109-016-1386-3
4. Lin N., Simon M.C. Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. J. Clin. Invest. 2016; 126 (10): 3661–3671. DOI: 10.1172/JCI84426.
5. Cappuzzello C., Di Vito L., Melchionna R., Melillo G., Silvestri L., Cesareo E., Crea F., Liuzzo G., Facchiano A., Capogrossi M.C., Napolitano M. Increase of plasma IL-9 and decrease of plasma IL-5, IL-7, and IFN-γ in patients with chronic heart failure. J. Transl. Med. 2011; 9: 28. DOI: 10.1186/1479-5876-9-28.
6. Churina E.G., Urazova O.I., Novitskiy V.V., Esimova I.E. Secondary immunological deficiency in patients with pulmonary tuberculosis. Immunodiagnostics and immunotherapy. Tomsk: Printing Manufactory Publ., 2013: 84 (in Russ.).
7. Moskalev A.V., Rudoy A.S., Apchel A.V., Zueva V.O., Kazymova O.E. Features of biology of transforming growth factor β and immunopathology. Bulletin of the Russian Military Medical Academy. 2016; 2 (54): 206–216 (in Russ.).
8. Belova O.V., Arion V.Ya., Sergienko V.I. The role of cytokines in the immunological function of the skin. International Journal of Immunopathology, Allergology, Infectology. 2008; 1: 41–55 (in Russ.).
9. Sapicheva Yu.Yu., Kassil V.L. Analyzes through the eyes of a resuscitator; edited by A.M. Ovezova. M.: MEDpress-inform, 2018: 224 (in Russ.).
10. Kalyagin A.N., Asner T.V. The concept of insufficiency of the function of external respiration. Spirography. Diagnosis of obstructive and restrictive respiratory failure; edited by Yu.A. Goryaeva. Irkutsk, 2005: 23 (in Russ.).
11. Hsiao H.W., Hsu T.S., Liu W.H., Hsieh W.C., Chou T.F., Wu Y.J., Jiang S.T., Lai M.Z. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat. Commun. 2015; 6: 6353. DOI: 10.1038/ncomms7353.
12. Nikonova A.A., Haitov M.R., Haitov R.M. Characterization and role of various macrophage populations in the pathogenesis of acute and chronic lung diseases. Medical Immunology. 2017; 19 (6): 657–672 (in Russ.).
13. Chumakova S.P., Shipulin V.M., Urazova O.I., Pogonchenkova D.A., Vins M.V., Pryakhin A.S., Kolobovnikova Yu.V., Churina E.G., Novickij V.V Ischemic cardiomyopathy: blood monocytes and mediators of their differentiation. Bulletin of the Russian Academic Medical Science. 2019; 74 (6): 396–404 (in Russ.).
14. Enninga E.A., Nevala W.K., Holtan S.G., Leontovich A.A., Markovic S.N. Galectin-9 modulates immunity by promoting Th2/M2 differentiation and impacts survival in patients with metastatic melanoma. Melanoma Res. 2016; 26 (5): 429–441. DOI: 10.1097/CMR.0000000000000281.
15. John S., Mishra R. Galectin-9: From cell biology to complex disease dynamics. J. Biosci. 2016; 41 (3): 507–534. DOI: 10.1007/s12038-016-9616-y.
16. Saigusa R., Asano Y., Nakamura K., Hirabayashi M., Miura S., Yamashita T., Taniguchi T., Ichimura Y., Takahashi T., Yoshizaki A., Miyagaki T., Sugaya M., Sato S. Systemic sclerosis dermal fibroblasts suppress Th1 cytokine production via galectin-9 overproduction due to Fli1 deficiency. J. Invest. Dermatol. 2017; 137 (9): 1850–1859. DOI: 10.1016/j.jid.2017.04.035.
17. O’Brien M.J., Shu Q., Stinson W.A., Tsou P.S., Ruth J.H., Isozaki T., Campbell P.L., Ohara R.A., Koch A.E., Fox D.A., Amin M.A. A unique role for galectin-9 in angiogenesis and inflammatory arthritis. Arthritis Res. Ther. 2018; 20 (1): 31. DOI: 10.1186/s13075-018-1519-x.
18. Seyfizadeh N., Seyfizadeh N., Gharibi T., Babaloo Z. Interleukin-13 as an important cytokine: A review on its roles in some human diseases. Acta Microbiol. Immunol. Hung. 2015; 62 (4): 341–378. DOI: 10.1556/030.62.2015.4.2.
19. Potapnev M.P. Autophagy, apoptosis, necrosis and immune recognition of self and nonself. Immunology. 2014; 35 (2): 95–102 (in Russ).
20. Kak G., Raza M., Tiwari B.K. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol. Concepts. 2018; 9 (1): 64–79. DOI: 10.1515/bmc-2018-0007.
21. Yildirim C., Vogel D.Y., Hollander M.R., Baggen J.M., Fontijn R.D., Nieuwenhuis S., Haverkamp A., de Vries M.R., Quax P.H., Garcia-Vallejo J.J., van der Laan A.M., Dijkstra C.D., van der Pouw Kraan T.C., van Royen N., Horrevoets A.J.. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages. PLoS One. 2015; 10 (4). URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401781/. DOI: 10.1371/journal.pone.0124347.
22. Paclik D., Werner L., Guckelberger O, Wiedenmann B, Sturm A. Galectins distinctively regulate central monocyte and macrophage function. Cell Immunol. 2011; 271 (1): 97–103. DOI: 10.1016/j.cellimm.2011.06.003.
Review
For citations:
Chumakova S.P., Urazova O.I., Vins M.V., Shipulin V.M., Pryakhin A.S., Bukreeva E.B., Bulanova A.A., Koshel A.P., Novitsky V.V. The content of hypoxia-inducible factors and mediators of immunosuppression in the blood in diseases associated with hypoxia. Bulletin of Siberian Medicine. 2020;19(3):105-112. https://doi.org/10.20538/1682-0363-2020-3-105-112