Molecular characteristics of anaplastic astrocytomas and isolation of molecular subgroups of their IDH1 mutant forms using in silico analysis
https://doi.org/10.20538/1682-0363-2020-3-177-187
Abstract
Aim. The problem of anaplastic astrocytomas is quite relevant today. The WHO classification distinguishes IDH1/IDH2 mutant anaplastic astrocytomas, anaplastic astrocytomas without IDH1/IDH2 mutations, and anaplastic astrocytomas not otherwise specified. The aim of this work was to cluster IDH1-mutant anaplastic astrocytomas based on their cytogenetic profile to select prognostically significant molecular subgroups, which can have both clinical and fundamental scientific value.
Materials and methods. In this work, we performed a cluster analysis of anaplastic astrocytomas according to their cytogenetic profiles based on available genetic databases of tumors and large cohort studies, as well as a comparison of Kaplan – Meyer survival curves for various molecular subgroups of patients.
Results. We studied the main genetic features of the inter-tumor heterogeneity of anaplastic astrocytomas and distinguished seven molecular subgroups based on the cytogenetic profile: embryo-like, inflammatory-like, deletion, matrix, cyclin, GATA3-dependent and tyrosine kinase. Moreover, each of these subgroups has not only distinctive molecular characteristics, but also important clinical features.
Conclusion. A detailed study of the molecular properties of anaplastic astrocytomas will not only optimize the process for predicting treatment outcomes, but also create innovative formats for targeted therapy within the framework of the concept of personalized medicine.
About the Authors
P. V. NikitinRussian Federation
16, 4th Tverskaya-Yamskaya Str., Moscow, 125047, Russian Federation
A. Yu. Belyaev
Russian Federation
16, 4th Tverskaya-Yamskaya Str., Moscow, 125047, Russian Federation
M. V. Ryzhov
Russian Federation
16, 4th Tverskaya-Yamskaya Str., Moscow, 125047, Russian Federation
References
1. Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131 (6): 803-820. https://doi.org/10.1007/s00401-016-1545-1.
2. Ostrom Q.T., Gittleman H., Liao P., Vecchione-Koval T., Wolinsky Y., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary brain and other central nervous system tumors iagnosed in the United States in 2010-2014. Neuro Oncol. 2017; 19 (1-5): v1-88. https://doi.org/10.1093/neuonc/nox158.
3. Kobyakov G.L., Bekyashev A.Kh., Golanov A.V., Konova- lov A.N., Naskhletashvili D.R., Potapov A.A., Rzayev D.A., Ryzhova M.V., Smolin A .V., Trunin Yu.Yu., Ulitin A.Yu. Practical recommendations for the drug treatment of primary tumors of the central nervous system. Malignant Tumors. 2017; 7(3):77-92 (in Russ.).
4. Geisbrecht B.V., Gould S.J. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J. Biol. Chem. 1999; 274 (43): 30527-30533.
5. Hartmann C., Hentschel B., Simon M., Westphal M., Schackert G., Tonn J.C., Loeffler M., Reifenberger G., Pietsch T., von Deimling A., Weller M.; German Glioma Network. Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin. Cancer Res. 2013; 19 (18): 5146-5157. https://doi.org/10.1158/1078-0432.CCR-13-0017.
6. Turcan S., Rohle D., Goenka A., Walsh L.A., Fang F., Yilmaz E., Campos C., Fabius A.W., Lu C., Ward P.S., Thompson C.B., Kaufman A., Guryanova O., Levine R., Heguy A., Viale A., Morris L.G., Huse J.T., Mellinghoff I.K., Chan T.A. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012; 483 (7390): 479-483.
7. Demyashkin G.A., Nikitin P.V., Chmutin E.G., Dshilkashiev B.S. The role of IDH-1 gene mutation in the development of brain astrocytomas and modeling of anti-oncogenic intracellular defense. Bulletin of Neurology, Psychiatry and Neurosurgery. 2017; 9:34-42 (in Russ.).
8. Wakimoto H., Tanaka S., Curry W.T., Loebel F., Zhao D., Tateishi K., Chen J., Klofas L.K., Lelic N., Kim J.C., Dias-Santagata D., Ellisen L.W., Borger D.R., Fendt S.M., Vander Heiden M.G., Batchelor T.T., Iafrate A.J., Cahill D.P., Chi A.S. Targetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas. Clin. Cancer Res. 2014; 20 (11): 2898-2909.
9. Nikitin P.V., Potapov A.A., Ryzhova M.V., Shurkhai V.A., Kulikov E.E., Zhvansky E.S., Popov I.A., Nikolaev E.N. The role of lipid metabolism disorders, atypical isoforms of protein kinase C, and mutational status of cytosolic and mitochondrial forms of isocitrate dehydrogenase in carcino- genesis of glial tumors. Burdenko’s Journal of Neurosurgery. 2018; 82 (3):112-120 (in Russ.). https://doi.org/10.17116/neiro2018823112.
10. Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg. Rev. 2017; 40 (1): 1-14. https://doi.org/10.1007/s10143-016-0709-8.
11. Stroup D.F., Berlin J.A., Morton S.C., Olkin I., Williamson G.D., Rennie D., Moher D., Becker B.J., Sipe T.A., Thacker S.B. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000; 283 (15): 2008-2012.
12. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010; 25 (9): 603-605. https://doi.org/10.1007/s10654-010-9491-z.
13. The Cancer Genome Atlas, National Institutes of Health, USA. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga.
14. Cancer Genome Atlas Research Network. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. Engl. J. Med. 2015; 372 (26): 2481-2498. https://doi.org/10.1056/NEJMoa1402121.
15. Cheng D.T., Mitchell T.N., Zehir A., Shah R.H., Benayed R., Syed A., Chandramohan R., Liu Z.Y., Won H.H., Scott S.N., Brannon A.R., O’Reilly C., Sadowska J., Casanova J., Yannes A., Hechtman J.F., Yao J., Song W., Ross D.S., Oultache A., Dogan S., Borsu L., Hameed M., Nafa K., Arcila M.E., Ladanyi M., Berger M.F. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): A hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 2015; 17 (3): 251-264. https://doi.org/10.1016/j.jmoldx.2014.12.006.
16. Johnson B.E., Mazor T., Hong C., Barnes M., Aihara K., McLean C.Y., Fouse S.D., Yamamoto S., Ueda H., Tatsuno K. Asthana S., Jalbert L.E., Nelson S.J., Bollen A.W., Gustafson W.C., Charron E., Weiss W.A., Smirnov I.V., Song J.S., Olshen A.B., Cha S., Zhao Y., Moore R.A., Mungall A.J., Jones S.J.M., Hirst M., Marra M.A., Saito N., Aburatani H., Mukasa A., Berger M.S., Chang S.M., Taylor B.S., Costello J.F. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014; 343 (6167): 189-193. https://doi.org/10.1126/science.1239947.
17. Ceccarelli M., Barthel F.P., Malta T.M., Sabedot T.S., Salama S.R., Murray B.A., Morozova O., Newton Y., Radenbaugh A., Pagnotta S.M., Anjum S., Wang J., Manyam G., Zoppoli P., Ling S., Rao A.A., Grifford M., Cherniack A.D., Zhang H., Poisson L., Carlotti C.G. Jr., Tirapelli D.P., Rao A., Mikkelsen T., Lau C.C., Yung W.K., Rabadan R., Huse J., Brat D.J., Lehman N.L., Barnholtz-Sloan J.S., Zheng S., Hess K., Rao G., Meyerson M., Beroukhim R., Cooper L., Akbani R., Wrensch M., Haussler D., Aldape K.D., Laird P.W., Gutmann D.H.; TCGA Research Network, Noushmehr H., Iavarone A., Verhaak R.G. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016; 164 (3): 550-563. https://doi.org/10.1016/j.cell.2015.12.028.
18. Venteicher A.S., Tirosh I., Hebert C., Yizhak K., Neftel C., Filbin M.G., Hovestadt V., Escalante L.E., Shaw M.L., Rodman C., Gillespie S.M., Dionne D., Luo C.C., Ravichandran H., Mylvaganam R., Mount C., Onozato M.L., Nahed B.V., Wakimoto H., Curry W.T., Iafrate A.J., Rivera M.N., Frosch M.P., Golub T.R., Brastianos P.K., Getz G., Patel A.P., Monje M., Cahill D.P., Rozenblatt-Rosen O., Louis D.N., Bernstein B.E., Regev A., Suvà M.L. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science. 2017; 355 (6332). https://doi.org/10.1126/science.aai8478.
19. Amirian E.S., Armstrong G.N., Zhou R., Lau C.C., Claus E.B., Barnholtz-Sloan J.S., Il’yasova D., Schildkraut J., Ali-Osman F., Sadetzki S., Johansen C., Houlston R.S., Jenkins R.B., Lachance D., Olson S.H., Bernstein J.L., Merrell R.T., Wrensch M.R., Davis F.G., Lai R., Shete S., Amos C.I., Scheurer M.E., Aldape K., Alafuzoff I., Brännström T., Broholm H., Collins P., Giannini C., Rosenblum M., Tihan T., Melin B.S., Bondy M.L. The Glioma International Case-Control Study: A Report From the Genetic Epidemiology of Glioma International Consortium. Am. J. Epidemiol. 2016; 183 (2): 85-91. https://doi.org/10.1093/aje/kwv235.
20. Shete S., Hosking F.J., Robertson L.B., Dobbins S.E., Sanson M., Malmer B., Simon M., Marie Y., Boisselier B., Delattre J.Y., Hoang-Xuan K., El Hallani S., Idbaih A., Zelenika D., Andersson U., Henriksson R., Bergenheim A.T., Feychting M., Lönn S., Ahlbom A., Schramm J., Linnebank M., Hemminki K., Kumar R., Hepworth S.J., Price A., Armstrong G., Liu Y., Gu X., Yu R., Lau C., Schoemaker M., Muir K., Swerdlow A., Lathrop M., Bondy M., Houlston R.S. Genome-wide association study identifies five susceptibility loci for glioma. Nat. Genet. 2009; 41 (8): 899-904. https://doi.org/10.1038/ng.407.
21. Kinnersley B., Labussière M., Holroyd A., Di Stefano A.L., Broderick P., Vijayakrishnan J., Mokhtari K., Delattre J.Y., Gousias K., Schramm J., Schoemaker M.J., Fleming S.J., Herms S., Heilmann S., Schreiber S., Wichmann H.E., Nöthen M.M., Swerdlow A., Lathrop M., Simon M., Bondy M., Sanson M., Houlston R.S. Genome-wide association study identifies multiple susceptibility loci for glioma. Nat. Commun. 2015; 6:8559. https://doi.org/10.1038/ncomms9559.
22. Rajaraman P., Melin B.S., Wang Z., McKean-Cowdin R., Michaud D.S., Wang S.S., Bondy M., Houlston R., Jenkins R.B., Wrensch M., Yeager M., Ahlbom A., Albanes D., Andersson U., Freeman L.E., Buring J.E., Butler M.A., Braganza M., Carreon T., Feychting M., Fleming S.J., Gapstur S.M., Gaziano J.M., Giles G.G., Hallmans G., Henriksson R., Hoffman-Bolton J., Inskip P.D., Johansen C., Kitahara C.M., Lathrop M., Liu C., Le Marchand L., Linet M.S., Lonn S., Peters U., Purdue M.P., Rothman N., Ruder A.M., Sanson M., Sesso H.D., Severi G., Shu X.O., Simon M., Stampfer M., Stevens V.L., Visvanathan K., White E., Wolk A., Zeleniuch-Jacquotte A., Zheng W., Decker P., Enciso-Mora V., Fridley B., Gao Y.T., Kosel M., Lachance D.H., Lau C., Rice T., Swerdlow A., Wiemels J.L., Wiencke J.K., Shete S., Xiang Y.B., Xiao Y., Hoover R.N., Fraumeni J.F. Jr., Chatterjee N., Hartge P., Chanock S.J. Genome-wide Association Study of Glioma and Meta-analysis. Hum. Genet. 2012; 131 (12):1877-1888. https://doi.org/10.1007/s00439-012-1212-0.
23. Wrensch M., Jenkins R.B., Chang J.S., Yeh R.F., Xiao Y., Decker P.A., Ballman K.V., Berger M., Buckner J.C., Chang S., Giannini C., Halder C., Kollmeyer T.M., Kosel M.L., LaChance D.H., McCoy L., O’Neill B.P., Patoka J., Pico A.R., Prados M., Quesenberry C., Rice T., Rynearson A.L., Smirnov I., Tihan T., Wiemels J., Yang P., Wiencke J.K. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat. Genet. 2009; 41 (8) :905-908. https://doi.org/10.1038/ng.408.
24. Jenkins R.B., Wrensch M.R., Johnson D., Fridley B.L., Decker P.A., Xiao Y., Kollmeyer T.M., Rynearson A.L., Fink S., Rice T., McCoy L.S., Halder C., Kosel M.L., Giannini C., Tihan T., O‘Neill B.P., Lachance D.H., Yang P., Wiemels J., Wiencke J.K. Distinct germ line polymorphisms underlie glioma morphologic heterogeneity. Cancer Genet. 2011; 204 (1): 13-18. https://doi.org/10.1016/j.cancergencyto.2010.10.002.
25. Song X., Zhou K., Zhao Y., Huai C., Zhao Y., Yu H., Chen Y., Chen G., Chen H., Fan W., Mao Y., Lu D. Fine mapping analysis of a region of 20q13.33 identified five independent susceptibility loci for glioma in a Chinese Han population. Carcinogenesis. 2012; 33 (5): 1065-1071. https://doi.org/10.1093/carcin/bgs117.
26. Richardson T.E., Snuderl M., Serrano J., Karajannis M.A., Heguy A., Oliver D., Raisanen J.M., Maher E.A., Pan E., Barnett S., Cai C., Habib A.A., Bachoo R.M., Hatanpaa K.J. Rapid progression to glioblastoma in a subset of IDH-mutated astrocytomas: a genome-wide analysis. J. Neurooncol. 2017; 133 (1): 183-192. https://doi.org/10.1007/s11060-017-2431-y.
27. Baietti M.F., Zhang Z., Mortier E., Melchior A., Degeest G., Geeraerts A., Ivarsson Y., Depoortere F., Coomans C., Vermeiren E., Zimmermann P., David G. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 2012; 14(7):677-685. https://doi.org/10.1038/ncb2502.
28. Conacci-Sorrell M., McFerrin L., Eisenman R.N. An overview of MYC and its interactome. Cold Spring Harb. Perspect Med. 2014; 4 (1): a014357. https://doi.org/10.1101/cshperspect.a014357.
29. Hill R.M., Kuijper S., Lindsey J.C., Petrie K., Schwalbe E.C., Barker K., Boult J.K., Williamson D., Ahmad Z., Hallsworth A., Ryan S.L., Poon E., Robinson S.P., Ruddle R., Raynaud F.I., Howell L., Kwok C., Joshi A., Nicholson S.L., Crosier S., Ellison D.W., Wharton S.B., Robson K., Michalski A., Hargrave D., Jacques T.S., Pizer B., Bailey S., Swartling F.J., Weiss W.A., Chesler L., Clifford S.C. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell. 2015; 27 (1): 72-84. https://doi.org/10.1016/j.ccell.2014.11.002.
30. Ryzhova M.V., Zheludkova O.G., Kumirova É.V., Shishkina L.V., Panina T.N., Gorelyshev S.K., Khukhlaeva E.A., Mazerkina N.A., Matuev K.B., Medvedeva O.A. Characteristics of medulloblastoma in children under age of three years. Burdenko’s Journal of Neurosurgery. 2013; 77 (1): 3-10; discussion 11.
31. Chen R., Kim O., Li M., Xiong X., Guan J.L., Kung H.J., Chen H., Shimizu Y., Qiu Y. Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain. Nat. Cell Biol. 2001; 3 (5): 439-444.
32. Ducut Sigala J.L., Bottero V., Young D.B., Shevchenko A., Mercurio F., Verma I.M. Activation of transcription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit. Science. 2004; 304 (5679): 1963-1967.
33. Alpay M., Backman L.R., Cheng X., Dukel M., Kim W.J., Ai L., Brown K.D. Oxidative stress shapes breast cancer phenotype through chronic activation of ATM-dependent signaling. Breast Cancer Res. Treat. 2015; 151 (1): 75-87. https://doi.org/10.1007/s10549-015-3368-5.
34. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009; 1 (6): a001651. https://doi.org/10.1101/cshperspect.a001651.
35. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006; 441 (7092): 431-436.
36. Chan S.W., Hong W. Retinoblastoma-binding protein 2 (Rbp2) potentiates nuclear hormone receptor-mediated transcription. J. Biol. Chem. 2001; 276 (30): 28402-28412.
37. Ornitz D.M., Xu J., Colvin J.S., McEwen D.G., MacArthur C.A., Coulier F., Gao G., Goldfarb M. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 1996; 271 (25): 15292-15297.
38. Lu R., Niida H., Nakanishi M. Human SAD1 kinase is involved in UV-induced DNA damage checkpoint function. J. Biol. Chem. 2004; 279 (30): 31164-31170.
39. Franchini C., Fontana F., Minuzzo M., Babbio F., Privitera E. Apoptosis promoted by up-regulation of TFPT (TCF3 fusion partner) appears p53 independent, cell type restricted and cell density influenced. Apoptosis. 2006; 11 (12): 2217-2224.
40. Millevoi S., Loulergue C., Dettwiler S., Karaa S.Z., Keller W., Antoniou M., Vagner S. An interaction between U2AF 65 and CF I(m) links the splicing and 3’ end processing machineries. EMBO J. 2006; 25 (20): 4854-4864.
41. Lagresle-Peyrou C., Luce S., Ouchani F., Soheili T.S., Sadek H., Chouteau M., Durand A., Pic I., Majewski J., Brouzes C., Lambert N., Bohineust A., Verhoeyen E., Cosset F.L., Magerus-Chatinet A., Rieux-Laucat F., Gandemer V., Monnier D., Heijmans C., van Gijn M., Dalm V.A., Mahlaoui N., Stephan J.L., Picard C., Durandy A., Kracker S., Hivroz C., Jabado N., de Saint Basile G., Fischer A., Cavazzana M., André-Schmutz I. X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene. J. Allergy Clin. Immunol. 2016; 138 (6): 1681-1689.e8. https://doi.org/10.1016/j.jaci.2016.04.032.
42. Major M.B., Camp N.D., Berndt J.D., Yi X., Goldenberg S.J., Hubbert C., Biechele T.L., Gingras A.-C., Zheng N., Maccoss M.J., Angers S., Moon R.T. Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science. 2007; 316 (5827): 1043-1046.
43. Stott F.J., Bates S., James M.C., McConnell B.B., Starborg M., Brookes S., Palmero I., Ryan K., Hara E., Vousden K.H., Peters G. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998; 17 (17): 5001-5014.
44. Tsubari M., Tiihonen E., Laiho M. Cloning and characterization of p10, an alternatively spliced form of p15 cyclin-dependent kinase inhibitor. Cancer Res. 1997; 57 (14): 2966-2973.
45. Shirahata M., Ono T., Stichel D., Schrimpf D., Reuss D.E., Sahm F., Koelsche C., Wefers A., Reinhardt A., Huang K., Sievers P., Shimizu H., Nanjo H., Kobayashi Y., Miyake Y., Suzuki T., Adachi J.I., Mishima K., Sasaki A., Nishikawa R., Bewerunge-Hudler M., Ryzhova M., Absalyamova O., Golanov A., Sinn P., Platten M., Jungk C., Winkler F., Wick A., Hänggi D., Unterberg A., Pfister S.M., Jones D.T.W., van den Bent M., Hegi M., French P., Baumert B.G., Stupp R., Gorlia T., Weller M., Capper D., Korshunov A., Herold-Mende C., Wick W., Louis D.N., von Deimling A. Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol. 2018; 136 (1): 153-166. https://doi.org/10.1007/s00401-018-1849-4.
46. Cohen H., Ben-Hamo R., Gidoni M., Yitzhaki I., Kozol R., Zilberberg A., Efroni S. Shift in GATA3 functions, and GATA3 mutations, control progression and clinical presentation in breast cancer. Breast Cancer Res. 2014; 16 (6): 464. https://doi.org/10.1186/s13058-014-0464-0.
47. Kaufmann I., Martin G., Friedlein A., Langen H., Keller W. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J. 2004; 23 (3): 616-626.
48. Heinrich M.C., Corless C.L., Duensing A., McGreevey L., Chen C.J., Joseph N., Singer S., Griffith D.J., Haley A., Town A., Demetri G.D., Fletcher C.D., Fletcher J.A. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003; 299 (5607): 708-710. https://doi.org/10.1126/science.1079666.
49. Sun J., Pedersen M., Rönnstrand L. The D816V mutation of c-Kit circumvents a requirement for Src family kinases in c-Kit signal transduction. J. Biol. Chem. 2009; 284.(17): 11039-11047. https://doi.org/10.1074/jbc.M808058200.
50. Watanabe T., Nobusawa S., Kleihues P., Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am. J. Pathol. 2009; 174 (4): 1149-1153. https://doi.org/10.2353/ajpath.2009.080958.
51. Pathania M., De Jay N., Maestro N., Harutyunyan A.S., Nitarska J., Pahlavan P., Henderson S., Mikael L.G., Richard-Londt A., Zhang Y., Costa J.R., Hébert S., Khazaei S., Ibrahim N.S., Herrero J., Riccio A., Albrecht S., Ketteler R., Brandner S., Kleinman C.L., Jabado N., Salomoni P. H3.3K27M Cooperates with Trp53 Loss and PDGFRA gain in mouse embryonic neural progenitor cells to induce invasive high-grade gliomas. Cancer Cell. 2017; 32 (5): 684-700.e9. https://doi.org/10.1016/j.ccell.2017.09.014.
Review
For citations:
Nikitin P.V., Belyaev A.Yu., Ryzhov M.V. Molecular characteristics of anaplastic astrocytomas and isolation of molecular subgroups of their IDH1 mutant forms using in silico analysis. Bulletin of Siberian Medicine. 2020;19(3):177-187. https://doi.org/10.20538/1682-0363-2020-3-177-187
ISSN 1819-3684 (Online)